首页|基于深度学习的多数据中心通信网络架构优化研究

基于深度学习的多数据中心通信网络架构优化研究

扫码查看
随着云计算、大数据以及物联网技术的快速发展,多数据中心通信网络架构在支持大规模数据传输和高服务质量需求方面面临着严峻挑战.传统的网络架构优化方法往往受限于其固定的规则和有限的预测能力.文章提出基于深度学习的多数据中心通信网络架构优化方法,通过构建深度学习模型,实现对网络流量、传输延迟等关键指标的准确预测和优化.实验结果表明,所提方法能有效提高数据传输效率和服务质量,为云计算和大数据应用提供稳定可靠的网络支持.
Research on Optimization of Multi Data Center Communication Network Architecture Based on Deep Learning
With the rapid development of cloud computing,big data,and the Internet of Things technology,multi data center communication network architecture is facing severe challenges in supporting large-scale data transmission and high quality of service requirements.Traditional network architecture optimization methods are often limited by their fixed rules and limited predictive ability.This article proposes a deep learning based optimization method for multi data center communication network architecture.By constructing a deep learning model,accurate prediction and optimization of key indicators such as network traffic and transmission delay can be achieved.The experimental results show that the proposed method can effectively improve data transmission efficiency and service quality,providing stable and reliable network support for cloud computing and big data applications.

multiple data centerscommunication network architecturedeep learning

句赫、王涛、赵星源、乔新辉、张海涛

展开 >

中国电力工程顾问集团有限公司,北京 100032

北京洛斯达科技发展有限公司,北京 100032

中能建数字科技集团有限公司,北京 100032

多数据中心 通信网络架构 深度学习

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(15)