首页|基于深度学习的电能配用优化算法在智能电网中的应用研究

基于深度学习的电能配用优化算法在智能电网中的应用研究

扫码查看
随着国内电网规模不断扩大,借助前沿通信技术,智能电网得以实现对电力资源的实时监测,进而提升设备使用效率.为深化电能配用的智能化程度,加入深度学习技术,特别是长短期记忆(Long Short-Term Memory,LSTM)网络,旨在捕捉电力需求数据中潜藏的长期依赖关系,并精准预测未来电力需求走势.在高性能计算环境支持下,利用TensorFlow和Keras框架深入剖析海量的历史电力需求数据.为确保数据质量,对原始数据进行严格的预处理工作,构建适用于深度学习模型的高质量数据集.随后,按照科学的比例将数据集划分为训练集、验证集以及测试集,以便对深度学习模型进行训练和优化.实验结果表明,LSTM网络在测试集上的预测误差低至 0.028,预测精度高达95.4%,与传统的循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)模型相比表现更为优越.该方法有助于提升电力系统的运行效率,为智能电网的进一步发展提供有力支撑.
Research on the Optimization Algorithm of Electric Energy Allocation Based on Deep Learning in Smart Grid
With the continuous expansion of domestic power grid scale,with the help of cutting-edge communication technology,smart grid can realize real-time monitoring of power resources,thereby improving the efficiency of equipment use.In order to deepen the intelligence of power distribution,deep learning technology,especially Long Short-Term Memory(LSTM)network,is added to capture the hidden long-term dependence in power demand data and accurately predict the future power demand trend.With the support of high-performance computing environment,massive historical power demand data are deeply analyzed by using TensorFlow and Keras framework.In order to ensure the data quality,the original data is strictly preprocessed and a high-quality data set suitable for deep learning model is constructed.Then,according to the scientific proportion,the data set is divided into training set,verification set and test set in order to train and optimize the deep learning model.The experimental results show the forecast error of LSTM network on the test set is as low as 0.028,and the prediction accuracy is as high as 95.4%,which is superior to the traditional Recurrent Neural Network(RNN)and Convolutional Neural Network(CNN)models.This method is helpful to improve the operation efficiency of power system and provide strong support for the further development of smart grid.

smart griddeep learningoptimization algorithm for electric energy allocation

叶兴国

展开 >

安徽南瑞中天电力电子有限公司,安徽合肥 230088

智能电网 深度学习 电能配用优化算法

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(16)
  • 4