首页|基于序列卷积神经网络的移动通信网络数据异常识别方法

基于序列卷积神经网络的移动通信网络数据异常识别方法

扫码查看
在移动通信网络中,正常数据通常远多于异常数据,导致数据集出现了严重的不平衡问题,降低了数据异常识别的准确性.为了克服这一局限,本研究提出了一种基于序列卷积神经网络的移动通信网络数据异常识别方法.采用K-means聚类算法聚类移动通信网络数据,以减少噪声影响、提高异常检测准确性和计算效率,并通过欧几里得距离计算相似度,优化聚类中心直至误差平方和最小化.构建序列卷积神经网络模型,利用其高效提取序列数据局部特征、捕捉时间依赖性及降低特征维度等优势,识别移动通信网络数据中的异常,通过卷积、池化和全连接层处理,结合Softmax激活函数实现准确分类.实验结果表明,文章方法的数据异常识别的准确性较高,异常数据结果与实际结果基本一致,最大识别误差仅为4条.
A Data Anomaly Recognition Method for Mobile Communication Networks Based on Sequential Convolutional Neural Networks
In mobile communication networks,there is usually much more normal data than abnormal data,resulting in serious imbalance problems in the dataset and reducing the accuracy of data anomaly recognition.To overcome this limitation,this study proposes a mobile communication network data anomaly recognition method based on spatial convolutional neural network.Using K-means clustering algorithm to cluster mobile communication network data,in order to reduce noise impact,improve anomaly detection accuracy and computational efficiency,and calculate similarity through Euclidean distance to optimize clustering centers until the sum of squared errors is minimized.Constructing a sequence convolutional neural network model,utilizing its advantages of efficiently extracting local features of sequence data,capturing temporal dependencies,and reducing feature dimensions,to identify anomalies in mobile communication network data.Through convolution,pooling,and fully connected layer processing,combined with Softmax activation function,accurate classification is achieved.The experimental results show that the accuracy of the data anomaly recognition method in the article is high,and the abnormal data results are basically consistent with the actual results,with a maximum recognition error of only 4.

sequential convolutional neural networkmobile communication networkdata anomaly identificationSoftmax activation function

王志勇

展开 >

中国电信股份有限公司衡水分公司,河北衡水 053000

序列卷积神经网络 移动通信网络 数据异常识别 Softmax激活函数

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(18)