首页|基于XGBoost的工业物联网环境下自适应网络切换算法研究

基于XGBoost的工业物联网环境下自适应网络切换算法研究

扫码查看
文章提出一种基于XGBoost算法的自适应网络切换方法,优化工业物联网(Industrial Internet of Things,IIoT)环境中Wi-Fi与 5G网络的切换效率.通过XGBoost模型深度学习历史网络性能数据和环境参数,智能预测最优网络切换时机和目标网络类型.该方法实现了动态网络选择,并结合动态缓存系统利用历史数据优化决策,提高了切换效率和响应速度.引入的回滚检查机制确保在网络性能下降或切换失败时能够迅速恢复到稳定状态,保障通信质量.实验评估表明,该方法在切换成功率、平均延迟和系统开销方面表现优异,为提高IIoT设备的通信性能提供了有效解决方案.
Research on Adaptive Network Switching Algorithm in Industrial Internet of Things Environment Based on XGBoost
This paper proposes an adaptive network switching method based on the XGBoost algorithm to optimize the switching efficiency between Wi-Fi and 5G networks in Industrial Internet of Things(IIoT)environments.By deeply learning historical network performance data and environmental parameters,the XGBoost model intelligently predicts the optimal switching timing and target network type.This method enables dynamic network selection and integrates a dynamic caching system to utilize historical data for decision optimization,enhancing switching efficiency and response speed.A rollback check mechanism ensures quick recovery to a stable state in case of network performance degradation or switching failure,maintaining communication quality.Experimental evaluations demonstrate that this method excels in switching success rate,average latency,and system overhead,providing an effective solution for improving the communication performance of IIoT devices.

XGBoost algorithmadaptive network switchingWi-Fi and 5G network switchingIndustrial Internet of Things(IIoT)

陈文海

展开 >

广东南方电信规划咨询设计院有限公司,广东深圳 518038

XGBoost算法 自适应网络切换 Wi-Fi与5G网络切换 工业物联网(IIoT)

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(20)