首页|基于深度学习的光伏发电功率预测模型

基于深度学习的光伏发电功率预测模型

扫码查看
随着可再生能源的广泛应用,光伏发电在全球能源结构中占据重要地位.但光伏发电功率的预测由于天气状况和环境因素的复杂性而更具挑战性.通过对历史气象数据和光伏发电数据的深入分析与特征提取,文章提出一种基于深度学习的光伏发电功率预测模型,并通过实验验证了其高效性.实验结果表明,该模型在光伏发电功率预测方面具有更高的准确性和稳定性,相较于传统方法在预测精度和可靠性上均表现出显著优势.文章的研究为光伏发电系统的优化运营与管理提供了重要的参考和借鉴.
Photovoltaic Power Generation Prediction Model Based on Deep Learning
With the widespread application of renewable energy,photovoltaic power generation occupies an important position in the global energy structure.But the prediction of photovoltaic power generation is more challenging due to the complexity of weather conditions and environmental factors.Through in-depth analysis and feature extraction of historical meteorological data and photovoltaic power generation data,this paper proposes a photovoltaic power generation power prediction model based on deep learning,and its efficiency is verified through experiments.Experimental results show that the model has higher accuracy and stability in predicting photovoltaic power generation.Compared with traditional methods,it shows significant advantages in prediction accuracy and reliability.The research in this paper provides important reference and reference for the optimized operation and management of photovoltaic power generation systems.

photovoltaic power generationpower predictiondeep learningdata preprocessingfeature extraction

郑立鑫、杨楠

展开 >

国网北京通州供电公司,北京 100032

光伏发电 功率预测 深度学习 数据预处理 特征提取

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(20)