首页|基于改进Hadoop挖掘框架的电力通信异常数据提取研究

基于改进Hadoop挖掘框架的电力通信异常数据提取研究

扫码查看
电力通信系统异常数据往往隐藏在海量数据当中,导致Hadoop挖掘框架在异常数据提取中的覆盖度较低.因此,提出基于改进Hadoop挖掘框架的电力通信异常数据提取研究.通过预处理策略如标准化、滤波及复数信号归一化提高数据质量.引入本地数据聚合优化组件优化数据传输,采用多NameNode Hadoop架构解决单节点瓶颈问题,并结合K-Means聚类算法进行数据挖掘.通过特征评估与筛选和并行聚类分析,有效识别出关键的异常数据特征.实验结果显示,该方法能显著提高异常数据的提取覆盖度.
Research on Power Communication Abnormal Data Extraction Based on the Improved Hadoop Mining Framework
Abnormal data of power communication system are often hidden in massive data,which leads to low coverage of Hadoop mining framework in abnormal data extraction.Therefore,the research on abnormal data extraction of power communication based on improved Hadoop mining framework is proposed.The data quality is improved by preprocessing strategies such as standardization,filtering and normalization of complex signals.Local data aggregation optimization components are introduced to optimize data transmission,multi-NameNode Hadoop architecture is adopted to solve the bottleneck problem of single node,and K-Means clustering algorithm is combined for data mining.Through feature evaluation and screening and parallel clustering analysis,the key abnormal data features are effectively identified.The experimental results show that this method can significantly improve the extraction coverage of abnormal data.

improving Hadoop mining frameworkpower communication systemanomalous datafeature extractioncluster analysis

姚宬丞、蒋何

展开 >

国网四川省电力公司信息通信公司,四川成都 610000

改进Hadoop挖掘框架 电力通信系统 异常数据 特征提取 聚类分析

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(20)