首页|基于云计算的光伏发电功率预测模型研究

基于云计算的光伏发电功率预测模型研究

扫码查看
光伏发电作为一种清洁的可再生能源发电方式,近年来得到了广泛应用,但其随机性和波动性使得功率预测变得极为重要.重点研究基于云计算的光伏发电功率预测模型,探讨云计算对提高预测精度与效率的作用.通过实验设计对比云计算环境与本地计算环境下支持向量机(Support Vector Machine,SVM)、卷积神经网络(Convolutional Neural Networks,CNN)以及集成模型(SVM+CNN)的性能差异.实验结果表明,云计算环境下的集成模型在预测精度、均方误差、计算效率等方面均优于本地计算环境.云计算的强大数据处理能力显著缩短了模型的训练时间,并提升了模型的预测准确性.
Research on the Power Prediction Model of Photovoltaic Power Generation Based on Cloud Computing
Photovoltaic power generation,as a clean and renewable energy power generation mode,has been widely applied in recent years,but its randomness and volatility make power prediction extremely important.The article focuses on the study of cloud computing based photovoltaic power generation prediction models and explores the role of cloud computing in improving prediction accuracy and efficiency.We compared the performance differences of Support Vector Machines(SVM),Convolutional Neural Networks(CNN),and ensemble models(SVM+CNN)between cloud computing and local computing environments through experimental design.The experimental results show that the integrated model in cloud computing environment outperforms the local computing environment in terms of prediction accuracy,mean square error,and computational efficiency.The powerful data processing capabilities of cloud computing significantly shorten the training time of models and improve their predictive accuracy.

photovoltaic power generationpower predictioncloud computingmachine learningdata processing

张寿泉

展开 >

中电建新能源集团股份有限公司甘肃分公司,甘肃 兰州 730000

光伏发电 功率预测 云计算 机器学习 数据处理

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(23)