首页|基于深度学习的单片机多机通信电路设计

基于深度学习的单片机多机通信电路设计

扫码查看
文章旨在探讨如何通过深度学习技术优化单片机多机通信系统,提升其在工业环境下的可靠性和效率.采用STM32F407 作为核心控制器,设计了基于RS-485 总线的多机通信硬件电路,并提出了结合长短期记忆(Long Short-Term Memory,LSTM)和卷积神经网络(Convolutional Neural Networks,CNN)的自适应通信协议及基于深度强化学习(Deep Reinforcement Learning,DRL)的智能决策机制.实验结果显示,在不同强度的电磁干扰下,与传统协议相比,所提方案在通信成功率、传输延迟、吞吐量、错误率及能耗效率等方面均有显著改善,尤其是在高干扰环境下优势更明显.研究表明,基于深度学习的通信方案为工业通信系统带来了新的解决方案.
Design of Multi-MCU Communication Circuit Based on Deep Learning
This article aims to explore how deep learning technology can be utilized to optimize multi-master communication systems in microcontrollers,thereby enhancing their reliability and efficiency in industrial environments.Using the STM32F407 as the core controller,we designed hardware circuits for multi-master communication based on the RS-485 bus,and proposed an adaptive communication protocol combining Long Short-Term Memory(LSTM)and Convolutional Neural Networks(CNN)along with an intelligent decision-making mechanism based on Deep Reinforcement Learning(DRL).Experimental results show that under different levels of electromagnetic interference,compared with traditional protocols,the proposed scheme significantly improves in terms of communication success rate,transmission delay,throughput,error rate,and energy efficiency,with more pronounced advantages in highly interfering environments.The research indicates that deep-learning-based communication schemes offer new solutions for industrial communication systems.

deep learningmicrocontroller multi-node communicationSTM32F407

王增刚

展开 >

山西华澳商贸职业学院,山西 晋中 030600

深度学习 单片机多机通信 STM32F407

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(24)