首页|基于AI的光伏组件缺陷自动识别系统设计与实现

基于AI的光伏组件缺陷自动识别系统设计与实现

扫码查看
光伏组件在长时间使用中容易出现裂纹、污损以及热斑等缺陷,这些缺陷若不及时发现和处理,将会影响发电效率和组件寿命。针对这一问题,提出了一种结合卷积神经网络(CNN)与迁移学习技术的缺陷识别方法。通过对大量光伏组件缺陷图像的训练和测试,该系统能够自动识别出不同类型的缺陷并进行分类。实验结果表明,该系统在实际应用中具有较高的识别准确率和稳定性,有效提高了光伏组件缺陷检测的自动化程度,为光伏电站的智能运维提供了可靠的技术支持。
Design and Implementation of an AI Based Automatic Defect Recognition System for Photovoltaic Modules
Photovoltaic modules are prone to defects such as cracks,stains,and hot spots during long-term use.If these defects are not detected and treated in a timely manner,they will affect power generation efficiency and module lifespan.This article proposes a defect recognition method that combines Convolutional Neural Network(CNN)and transfer learning techniques to address this issue.By training and testing a large number of defect images of photovoltaic modules,the system can automatically identify and classify different types of defects.The experimental results show that the system has high recognition accuracy and stability in practical applications,effectively improving the automation level of defect detection in photovoltaic modules and providing reliable technical support for the intelligent operation and maintenance of photovoltaic power plants.

defects in photovoltaic modulesArtificial Intelligence(AI)Convolutional Neural Network(CNN)transfer learning

毛锐

展开 >

中通服网盈科技有限公司,江苏 南京 210000

光伏组件缺陷 人工智能(AI) 卷积神经网络(Convolutional Neural Network,CNN) 迁移学习

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(24)