首页|边云协同下的电力通信设备健康状态实时监测方法研究

边云协同下的电力通信设备健康状态实时监测方法研究

扫码查看
随着电力系统的快速发展,通信设备的健康状态监测变得尤为重要.重点研究边云协同下的电力通信设备健康状态实时监测方法,旨在提升监测的准确性和实时性.通过构建边云协同架构,利用边缘计算的快速响应和云计算的强大处理能力,实现了对电力通信设备的实时状态监测和故障预测.不仅分析了电力通信设备的关键性能指标,而且设计了一套基于机器学习的监测算法,通过模拟实验验证了所提方法具有有效性.
Research on Real-Time Health Monitoring Methods for Power Communication Equipment under Edge-Cloud Collaboration
With the rapid development of power system,the health monitoring of communication equipment becomes particularly important.This paper focuses on the real-time monitoring method of power communication equipment health status under the cooperation of edge-cloud,aiming at improving the accuracy and real-time monitoring.Through the construction of edge-cloud collaborative architecture,the real-time state monitoring and fault prediction of power communication equipment are realized by using the rapid response of edge computing and the powerful processing ability of cloud computing.Not only the key performance indexes of power communication equipment are analyzed,but also a set of monitoring algorithm based on machine learning is designed,and the effectiveness of the proposed method is verified by simulation experiments.

edge-cloud collaborationpower communicationreal-time monitoringhealth statusmachine learning

张璞

展开 >

国网山东省电力公司信息通信公司,山东 济南 250000

边云协同 电力通信 实时监测 健康状态 机器学习

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(24)