首页|混合现实中基于GPU虚拟化的AI计算优化

混合现实中基于GPU虚拟化的AI计算优化

扫码查看
研究探讨混合现实(MR)应用中,通过GPU虚拟化优化AI计算,聚焦于多任务调度与资源共享.研究提出了一个模型,其包含一种根据任务优先级、资源需求和等待时间,动态为正在执行的任务分配GPU资源的机制.同时,模型采用优化的多任务调度算法,以提高调度效率.实验结果表明,尽管在单任务性能测试中模型的执行时间、GPU利用率和内存使用方面略逊于物理GPU,但在多任务并发和资源共享方面,研究提出的模型展现了显著优势.未来研究将探索设计更公平高效的资源共享策略,以及进一步优化多任务调度算法.
Optimization of AI computation in mixed reality based on GPU virtualization
This research explores the optimization of AI computation in Mixed Reality(MR)applications through GPU virtualiza-tion,focusing on multi-task scheduling and resource sharing.A model is proposed in this study that includes a mechanism for dynami-cally allocating GPU resources to tasks in progress based on task priority,resource demand,and wait time.Simultaneously,the model adopts an optimized multi-task scheduling algorithm to enhance scheduling efficiency.Experimental results show that although the model's execution time,GPU utilization rate,and memory usage are slightly inferior to the physical GPU in single-task performance tests,it demonstrates significant advantages in multi-task concurrency and resource sharing.Future research will explore the design of more fair and efficient resource sharing strategies and further optimize the multi-task scheduling algorithm.

Mixed realityAI computationMulti-task schedulingResource sharingGPU virtualization

梁桂才、李玉荣

展开 >

广西机电职业技术学院信息管理中心,广西南宁 530007

山西师范大学临汾学院数计系,山西临汾 041000

混合现实 AI计算 多任务调度 资源共享 GPU虚拟化

2023年广西科技厅广西重点研发计划项目

2023AB01399

2024

通信与信息技术
四川省通信学会

通信与信息技术

影响因子:0.223
ISSN:1672-0164
年,卷(期):2024.(2)
  • 1
  • 27