首页|基于灰色系统理论和聚类分析的新能源风力发电机超负荷状态主动估计算法

基于灰色系统理论和聚类分析的新能源风力发电机超负荷状态主动估计算法

扫码查看
在对发电机超负荷状态进行估计的过程中,由于影响负荷状态的因素较多,且具有非稳态属性,导致估计结果的误差较大,为此,提出基于灰色系统理论和聚类分析的新能源风力发电机超负荷状态主动估计算法研究.在分析风力发电状态时,引入了特征线法,将非恒定流的风击偏微分方程转化为常微分方程的形式,再将常微分方程近似的转化为差分方程,以此实现对风力发电系统复杂风力暂态的有效分析.在超负荷估计阶段,借助时间连续函数模型,将原始的风力发电系统状态数据信息转化为灰色生成列,采用层次聚类的方式对具体的负荷状态进行分类,最后组合灰色列的负荷信息,实现对风力发电机超负荷状态的准确估计.在测试结果中,设计主动估计算法方对于不同工况下的估计结果与实际超负荷情况的误差稳定在0.01 MW以内.
Active Algorithm for Overload State Estimation of New Energy Wind Generator Based on Grey System Theory and Cluster Analysis
In the process of estimating the overload state of the generator,due to many factors affecting the load state and the unstable attribute,the estimation error is large.Therefore,the active estimation algorithm of the overload state of the new energy wind turbine based on gray system theory and cluster analysis was pro-posed.In the analysis of wind power generation state,the characteristic line method was introduced to trans-form the non-constant flow of wind strike into the form of ordinary differential equation,and then transform the ordinary differential equation into differential equation,so as to realize the effective analysis of the com-plex wind transient of wind power generation system.In the overload estimation stage,the original state data information of the wind power generation system was transformed into a gray generation column with the help of the time continuous function model,and the specific load state was classified by hierarchical clustering.Finally,the load information of the gray column was combined to realize the accurate estimation of the over-load state of the wind turbine.In the test results,the error of the estimation results of the design active esti-mation algorithm and the actual overload situation under different working conditions is stable within 0.01MW.

gray system theorycluster analysiswind turbineoverload stateactive estimationgray gen-eration column

杨晓峰、俞勤新

展开 >

龙源电力集团(上海)新能源有限公司,上海 200122

灰色系统理论 聚类分析 风力发电机 超负荷状态 主动估计 灰色生成列

2024

微电机
西安微电机研究所

微电机

CSTPCD
影响因子:0.431
ISSN:1001-6848
年,卷(期):2024.57(1)
  • 14