首页|基于自联想核回归算法的数据驱动电机控制

基于自联想核回归算法的数据驱动电机控制

扫码查看
在电机控制领域,基于模型驱动的控制方法已经广为研究,随着计算机运算能力的提升,给大量数据计算带来了可能性.为进一步提升电机控制性能,研究了一种基于自联想核回归法算法的控制补偿策略,基于运行过程中的大量数据来校正补偿电机控制过程,以提升电机控制性能,平抑运行过程中的波动.通过理论以及仿真分析,该方法能较好完成电机运行控制,加上补偿后的控制策略能减小电流波动以及转矩脉动,有一定的控制补偿效果.此控制算法同样适用于其他电机控制策略的优化过程,有一定的参考价值.
Data Driven Motor Control Based on Auto Associative Kernel Regression Algorithm
In the field of motor control,the model-driven control method has been widely studied.With the improvement of computer computing power,it brings the possibility to calculate a large number of data.In order to further improve the motor control performance,a control compensation strategy based on Auto Asso-ciative Kernel Regression(AAKR)algorithm was studied to correct and compensate the motor control process based on a large number of data during operation,so as to improve the motor control performance,smooth out fluctuations during operation.Through theoretical and simulation analysis,the method can com-plete the motor operation control well,and the compensated control strategy can reduce the current fluctua-tion and torque ripple,and has a certain control compensation effect.This control algorithm is also applica-ble to the optimization process of other motor control strategies,and has a certain reference value.

auto associative kernel regressionmotor controlcompensation correctiondata driven

黎卫国、邓渊、张长虹、李明洋、杨旭、徐航

展开 >

中国南方电网有限责任公司超高压输电公司电力科研院,广州 510000

河南平高电气股份有限公司,河南平顶山 467001

清华大学电机工程与应用电子技术系,北京 100084

自联想核回归 电机控制 补偿校正 数据驱动

2024

微电机
西安微电机研究所

微电机

CSTPCD
影响因子:0.431
ISSN:1001-6848
年,卷(期):2024.57(5)
  • 7