首页|基于果蝇算法的永磁同步电机多目标优化设计

基于果蝇算法的永磁同步电机多目标优化设计

扫码查看
为了提高永磁同步电机(PMSM)的性能,本文以一台72 槽 60 极永磁同步电机为例,针对永磁同步电机多目标优化过程中多次有限元迭代导致的计算时间长和优化效率低的问题,提出了一种基于果蝇优化算法(FOA)的多目标优化方法.选取磁钢尺寸作为优化变量,以电机平均转矩、转矩波动和齿槽转矩作为优化目标,采用权重系数的多目标优化函数.首先通过有限元仿真获得各变量的样本空间,其次采用广义回归神经网络(GRNN)对仿真数据集进行拟合训练,得到非线性模型,然后运用FOA进行优化.最后,通过有限元仿真分析,结果表明FOA能有效抑制转矩波动以及增大平均转矩,且具有参数设置少、收敛速度快等优点,具有较好的应用价值.
Multi-objective Cooperative Optimization Study of Permanent Magnet Synchronous Motors Based on the Fruit Fly Algorithm
To improve the performance of Permanent Magnet Synchronous Motors(PMSM),this paper used a 72-slot 60-pole PMSM as an example.It addressed the issue of extended computational time and low opti-mization efficiency during multi-objective optimization by proposing a multi-objective optimization method based on the Fruit Fly Optimization Algorithm(FOA).The optimization variables selected are the dimen-sions of the magnetic steel,the optimization objectives include the motor's average torque,torque fluctuation,and slot torque.These objectives were incorporated into a multi-objective optimization function with weigh-ting coefficients.The approach begined by obtaining the sample space of each variable through finite element simulations.Subsequently,a Generalized Regression Neural Network(GRNN)was employed to fit and train the simulation dataset,creating nonlinear models.Finally,the Fruit Fly Optimization Algorithm(FOA)was applied for optimization.The finite element simulation analysis shows that the FOA algorithm effectively re-duces torque fluctuation and increases the average torque.It also offers advantages such as minimal parame-ter configuration,fast convergence,and resistance to getting trapped in local optima.This method holds sig-nificant practical value.

permanent magnet synchronous motorfruit fly optimization algorithmgeneralized regression neural networkmulti-objective optimizationfinite element analysis

柳洪、陈玮、王定龙、吴顺海

展开 >

湖南中车尚驱电气有限公司,湖南 株洲 412001

永磁同步电机 果蝇优化算法 广义回归神经网络 多目标优化 有限元分析

2024

微电机
西安微电机研究所

微电机

CSTPCD
影响因子:0.431
ISSN:1001-6848
年,卷(期):2024.57(7)