首页|基于VMD和POA-SVM的滚动轴承故障诊断

基于VMD和POA-SVM的滚动轴承故障诊断

扫码查看
针对三相电机轴承故障状态识别的问题,提出一种变分模态分解(Variational mode decomposition,VMD)与孔雀优化算法(Peafowl Optimization Algorithm,POA)优化支持向量机(Support Vector Machines,SVM)结合的故障识别方法,通过VMD将轴承的不同故障信号数据分解为多个本征模态分量(IMF),首先,根据样本熵选出合适的IMF重构成最优的特征信号;其次,计算特征信号的时域特征、能量熵、多尺度样本熵值,构成多维特征向量矩阵;最后,使用孔雀优化算法对SVM的惩罚参数和核函数进行优化,建立POA-SVM诊断模型,将构建好的多维特征向量矩阵输入到模型中进行诊断.将孔雀优化算法支持向量机(POA-SVM)与金豺优化算法(Golden Jackal Optimization,GJO)支持向量机(GJO-SVM)、粒子群优化算法(Porticle Swarm Optimization,PSO)支持向量机(PSO-SVM)进行对照试验,结果表明,POA-SVM相比GJO-SVM和PSO-SVM在不同工况下的故障识别率和稳定性有明显的提高.
Fault Diagnosis of Rolling Bearing Based on VMD and POA-SVM
To address the problem of fault state identification of three-phase motor bearings,a fault identifi-cation method combining Variational Mode Decomposition(VMD)and Peafowl Optimization Algorithm(POA)to optimize Support Vector Machines(SVM)was proposed.The different fault signal data of bear-ings were decomposed into multiple Intrinsic Mode Function(IMF)by VMD.First,according to the sample entropy,the appropriate IMF reconstructed the optimal feature signal;Secondly,the time domain features,energy entropy and multi-scale sample entropy of the feature signal were calculated to form a multi-dimen-sional feature vector matrix.Finally,the peacock optimization algorithm was used to optimize the penalty pa-rameters and kernel function of SVM,and the POA-SVM diagnosis model was established,and the con-structed multidimensional eigenvector matrix was input into the model for diagnosis.POA-SVM was com-pared with GJO-SVM and PSO-SVM.The results show that POA-SVM has obvious improvement in fault rec-ognition rate and stability compared with GJO-SVM and PSO-SVM under different working conditions.

variational mode decompositionpeafowl optimization algorithmmulti-scale sample entropysupport vector machinebearing fault diagnosis

高川、苏淑靖

展开 >

中北大学,省部共建动态测试技术国家重点实验室,太原 030051

变分模态分解 孔雀优化算法 多尺度样本熵 支持向量机 轴承故障诊断

2024

微电机
西安微电机研究所

微电机

CSTPCD
影响因子:0.431
ISSN:1001-6848
年,卷(期):2024.57(10)