首页|基于鲸鱼算法的永磁同步电机参数辨识方法

基于鲸鱼算法的永磁同步电机参数辨识方法

扫码查看
针对电驱动液压源中永磁同步电机满秩辨识模型在非稳定状态下辨识精度差的问题,提出一种结合稳定状态识别的参数辨识方法.该方法考虑电驱动液压源负载变化特点,通过实时计算滑动窗口内均方差值识别稳定状态,在已识别的稳定状态下进行参数辨识.使用鲸鱼优化算法优化可调参数进行参数辨识,结合自适应权重提升前期搜索广度,结合模拟退火算法增强全局搜索能力.结果表明:该稳定状态识别方法准确度可达 85%;负载恒定时,改进参数辨识方法辨识误差最大为1.46%,对比方法的最大误差为8.1%;负载变化时,改进参数辨识方法辨识误差可保持在3%内,消除了对比方法存在的辨识结果波动.
Parameter Identification of Permanent Magnet Synchronous Motor Based on Whale Optimization Algorithm Under Variable Load
A parameter identification method combining stable state identification was proposed to address the problem of poor identification accuracy of the full rank identification model for permanent magnet syn-chronous motors in electrically driven hydraulic power unit under unstable conditions.This method took into account the load variation characteristics of electrically driven hydraulic power unit,identified stable states by real-time calculating the mean square error value within the sliding window,and identified parameters un-der the identified stable state.Using whale optimization algorithm to optimize adjustable parameters for pa-rameter identification,combining adaptive weights to enhance the breadth of early search,and combining simulated annealing algorithm to enhance global search capability.The results show that the accuracy of the stable state recognition method can reach 85%;When the load is constant,the maximum identification error of the improved parameter identification method is 1.46%,and the maximum error of the comparison method is 8.1%;When the load changes,the identification error of the improved parameter identification method can be kept within 3%,eliminating the fluctuation of identification results in the comparison method.

permanent magnet synchronous motorparameter identificationwhale optimization algorithm

商晓恒、张正、曹学鹏、霍帅、刘晓辉、刘晓红

展开 >

徐州徐工随车起重机有限公司,江苏 徐州 221400

长安大学 道路施工技术与装备教育部重点实验室,西安 710064

西南交通大学 机械工程学院,成都 610031

永磁同步电机 参数辨识 鲸鱼算法

2024

微电机
西安微电机研究所

微电机

CSTPCD
影响因子:0.431
ISSN:1001-6848
年,卷(期):2024.57(12)