首页|基于合成点云与深度学习的建筑构件智能识别方法

基于合成点云与深度学习的建筑构件智能识别方法

扫码查看
本文研究了利用三维建筑信息模型生成的合成点云来训练深度学习算法以实现建筑构件智能识别的可行性.为了实现这一目标,本文首先提出了一种通过三种常见的商业软件将建筑信息模型转换为合成点云的原始方法.然后使用这些合成点云作为模拟数据集来训练深度学习模型,比较在不同数据集(真实数据集与合成数据集)下训练模型的智能识别性能,以验证合成点云数据集的有效性.实验结果证明了利用建筑信息模型生成的合成点云实现智能识别的可行性,合成数据集与真实数据集的训练模型其识别准确率仅相差3%,进一步表明了在智能识别中使用合成数据集代替真实数据集的可能性.该方法也为研究人员提供了一种新的方法来构建特定的数据集,用于他们自己的智能识别与语义分割研究,并为三维重建工作做出了贡献.
An Intelligent Identification Method for Building Components Based on Synthetic Point Cloud and Deep Learning
This paper investigates the viability of using synthetic point clouds generated by 3D build-ing information model to train deep learning algorithms to realize intelligent identification of building components.To achieve this goal,firstly,this paper proposes an original method of converting build-ing information model into synthetic point clouds through three common commercial software.Then,these synthesized point clouds are used as datasets to train the deep learning model and the intelligent identification performance of the trained model is compared under different datasets(real dataset and synthetic dataset)to verify the effectiveness of synthetic point clouds.The experimental result proves the feasibility of using synthetic point cloud generated by building information models to achieve intel-ligent identification.The accuracy gap between model trained by synthetic dataset and real dataset is only 3%,which further indicates the possibility of using synthetic dataset instead of real dataset in in-telligent identification.This method also provides researchers with a new method to construct specific datasets for their own intelligent identification and semantic segmentation research and contributes to 3D reconstruction work.

building information modeldeep learning modelpoint cloudintelligent identification

郭俊宇、徐照、陈宇文、胡天时

展开 >

东南大学 土木工程学院,江苏 南京 211189

江苏东印智慧工程技术研究院,江苏 南京 211100

建筑信息模型 深度学习 点云 智能识别

国家重点研发计划国家自然科学基金江苏省建设系统科技项目

2021YFF0500900720710432021ZD25

2024

土木工程与管理学报
华中科技大学

土木工程与管理学报

CSTPCDCHSSCD
影响因子:0.837
ISSN:2095-0985
年,卷(期):2024.41(1)
  • 17