首页|面向多类路面病害的智能集成检测方法

面向多类路面病害的智能集成检测方法

扫码查看
为提升路面病害检测效率,弥补当前病害排查手段低效费时的弊端,本文以深度学习技术为支撑,结合图像分类与目标检测技术,提出一种面向多类型路面病害的集成性智能检测方法.该方法将路面种类分类、路面病害判别和路面病害检测3个功能模块进行有效集成.首先,调整VGG-16算法,并加入SE注意力机制;其次,优化YOLOv7检测网络,添加小目标检测层的同时融入CBAM前馈卷积注意模块.结果表明,调整后的VGG-16网络在路面种类分类、路面病害判别任务上准确率均在98%以上,优化后的YOLOv7使沥青、混凝土、砌块路面检测平均精度分别提高了 3.00%,1.80%,3.90%.经实地测试,3个模块平均准确率分别为99.72%,98.28%,91.52%,整体方法综合准确率为89.69%.研究结果为路面病害快速筛查,实现整体评估提供有效参考.
An Intelligent Integrated Detection Method for Multiple Types of Pavement Distress
In order to improve the pavement distress detection efficiency and make up for the ineffi-cient and time-consuming limitations of current distress detection methods,an integrated intelligent detection method for multi-type pavement distress was proposed based on deep learning technology and combined image classification and target detection technology.The method effectively integrates three functional modules of pavement classification,pavement distress identification and pavement distress detection.Firstly,VGG-16 algorithm is adjusted and SE attention mechanism is added.Secondly,the YOLOv7 detection network is optimized,and the CBAM feedforward convolutional attention module is integrated while the small target detection layer is added.The results show that the adjusted VGG-16 network is more than 98%accurate in the task of pavement classification and pavement distress identi-fication,and the optimized YOLOv7 can improve the average accuracy of asphalt,concrete and block pavement detection by 3.00%,1.80%and 3.90%,respectively.Through field tests,the average ac-curacy of the three modules is 99.72%,98.28%and 91.52%respectively,and the comprehensive ac-curacy of the whole method is 89.69%.The results of this study provide an effective reference for the rapid screening and overall evaluation of pavement distress.

road engineeringroad distress detectiondeep learningimage classificationYOLOv7

韩豫、李文涛、刘泽锋、李康、杨林

展开 >

江苏大学 土木工程与力学学院,江苏 镇江 212013

道路工程 道路病害检测 深度学习 图像分类 YOLOv7

江苏省高层次人才项目江苏省研究生实践创新计划企业委托项目

SZCY-014SJCX22_1872KSJCKY202003

2024

土木工程与管理学报
华中科技大学

土木工程与管理学报

CSTPCDCHSSCD
影响因子:0.837
ISSN:2095-0985
年,卷(期):2024.41(2)
  • 18