首页|基于HACO-ALNS的车辆与无人机协同配送问题研究

基于HACO-ALNS的车辆与无人机协同配送问题研究

Research on Collaborative Delivery of Vehicles and Drones Based on HACO-ALNS

扫码查看
针对物流配送需求增大、"最后一公里"交付困难、车辆或无人机配送均具有一定局限性等问题,作者提出了带有动态能耗约束的车辆与无人机协同配送问题,以最小化总配送成本为 目标建立了混合整数规划模型,在约束中考虑了无人机一次起飞可完成多点配送、客户点差异等限制.设计了一种基于自适应大邻域搜索的混合蚁群算法进行求解,在蚁群算法中融入遗传算法,设计新的启发式因子.实验结果表明,该算法在不同规模算例上均具有良好的求解精度和运行速度.与不同配送模式的对比表明,多点配送的无人机装载率比单点配送高22.1%,动态能耗模式的成本与固定能耗相比平均降幅为3.31%.
Based on the problems of increasing demand for logistics delivery and limitations of vehicle and drone deliv-ery,this paper proposed collaborative delivery of vehicles and drones with dynamic energy consumption(CDVD-DEC).To minimize delivery cost,a mixed integer linear programming model was established.The limitations such as multi-point de-livery by drones and customer point differences were considered in the constraints.A hybrid ant colony optimization based on adaptive large neighborhood search(HACO-ALNS)was designed to solve the model,genetic algorithm was incorpo-rated in the ant colony optimization,a new heuristic factor was designed.The experimental results show that HACO-ALNS has good solution accuracy and running speed on different scale cases.The comparison with different delivery modes shows that the drone loading rate for multi-point delivery is 22.1%higher than for single-point delivery,and the average cost reduction for dynamic energy consumption mode compared to fixed energy consumption is 3.31%.

vehicles-dronescollaborative deliverydynamic energy consumptionACOALNS

辜勇、柴子艺、刘迪、李文锋

展开 >

武汉理工大学交通与物流工程学院,武汉 430063

车辆无人机 协同配送 动态能耗 蚁群算法 自适应大邻域搜索算法

国家自然科学基金

62173263

2024

武汉理工大学学报
武汉理工大学

武汉理工大学学报

影响因子:0.649
ISSN:1671-4431
年,卷(期):2024.46(2)
  • 16