首页|基于数据驱动的水泥企业碳排放预测模型研究

基于数据驱动的水泥企业碳排放预测模型研究

Study on the Data-driven Prediction Model for CO2 Emissions in Cement Enterprises

扫码查看
为解决目前水泥企业碳排放预测中存在的影响因素多、预测精度低问题,借助大数据机器学习技术,尝试构建了多种预测模型.结果表明:线性回归模型对企业碳排放预测误差达12.78%,机器学习模型可降低至9%,而通过智能烟花算法改进的BP(Back Propagation)网络模型可将误差降低至6%,能够较好地满足实际应用需求.进一步分析发现:对于企业碳排放量,"熟料产量和净购入电量"两因素影响最为显著,而提高替代燃料使用率则是当前实现节能减排的主要途径.
To address the problems of multiple influencing factors and low prediction accuracy in the current carbon e-mission prediction of cement enterprises,various prediction models have been constructed with the help of big data ma-chine learning technology.The results show that the prediction accuracy error of the linear regression algorithm model for cement enterprises'carbon emissions is 12.78%,which can be reduced to 9%by machine learning model.However,by im-proving the BP(Back Propagation)network model with intelligent fireworks algorithm,the error can be reduced to only 6%,which can better meet the practical application requirements.Further analysis found that for enterprise carbon emis-sions,"clinker production and net electricity purchase"are the two factors with the most significant impact,while increas-ing the use rate of alternative fuels is currently the main way to achieve energy conservation and emission reduction.

cement productioncarbon emissionsintelligent algorithmstatisticsprediction

詹家干、邵臻

展开 >

合肥工业大学管理学院,合肥 230002

安徽海螺集团有限责任公司,芜湖 241000

水泥生产 碳排放 智能算法 统计 预测

2024

武汉理工大学学报
武汉理工大学

武汉理工大学学报

影响因子:0.649
ISSN:1671-4431
年,卷(期):2024.46(3)
  • 16