首页|基于卷积神经网络的空间变异边坡可靠度分析及更新

基于卷积神经网络的空间变异边坡可靠度分析及更新

Spatially Variant Slope Reliability Analysis and Updating Based on Convolutional Neural Networks

扫码查看
考虑土体强度的空间变异性及参数更新,运用卷积神经网络(Convolutional Neural Networks,CNN)模型对边坡进行可靠度分析.以抗剪强度参数为随机变量,通过乔列斯基分解中点法模拟相关高斯随机场,利用有限元分析获得样本数据库,CNN模型经过训练和验证后用于预测边坡的安全系数,进而计算分析可靠度.基于场地新增信息/观测样本,利用贝叶斯方法更新边坡抗剪强度参数及随机场,应用前述CNN模型评价边坡可靠度.以φ=0型不排水饱和黏土边坡和c-φ型黏性土边坡为算例,结果表明:CNN模型具有较强学习能力与泛化能力,能显著提高各向异性随机场边坡可靠度的计算效率,且模型在边坡参数更新后也具有良好的预测性能;融合现场观测信息的参数更新可提供更为贴近实际的可靠度评估结果.
Considering the spatial variability and the updating of parameters of soil strength,a Convolutional Neural Networks(CNN)model was employed to analyze slope reliability.Taking the shear strength parameters as random varia-bles,the correlated Gaussian random fields were simulated using the Cholesky decomposition midpoint method.A sample database was obtained with finite element analysis.The CNN model was trained and validated to predict the safety factor of the slope,and then the slope reliability was calculated.Based on newly added information/observation samples,Bayes-ian method was used to update the shear strength parameters and random fields,the aforementioned CNN model was ap-plied to evaluate the slope reliability.Taking two slopes as examples,the results show that the CNN model has strong learning and generalization ability,and it can significantly improve the reliability calculation efficiency of the anisotropic random field slope,the model also has good predictive performance after the parameters are updated.Parameters updating that integrates on-site observation information can provide more realistic reliability evaluation.

spatial variabilityslope reliabilityCNNBayesian update

王鹏毅、申翃、秦月、陈宇航、雷瀚哲

展开 >

武汉理工大学土木工程与建筑学院,武汉 430070

空间变异性 边坡可靠度 卷积神经网络 贝叶斯更新

2024

武汉理工大学学报
武汉理工大学

武汉理工大学学报

影响因子:0.649
ISSN:1671-4431
年,卷(期):2024.46(10)