首页|个人防护装备穿戴安全检测技术的进展与应用

个人防护装备穿戴安全检测技术的进展与应用

Advancements and Applications of Wearable Safety Detection Technology for Personal Protective Equipment

扫码查看
为了分析和总结个人防护装备(PPE)检测技术的发展及其在工地安全管理中的应用,探索传感器和深度学习在检测中的作用与成效,作者采用文献调研与数据分析相结合的方法,基于Citespace系统梳理了近年来PPE检测领域的技术进展.通过比较基于传感器的检测方法与深度学习算法(包括One-stage和Two-stage)的优缺点,全面评估了这些技术在PPE检测中的实际应用效果.结果表明,深度学习技术能够显著提升PPE检测的准确性与效率,尤其在复杂场景和小目标检测中表现突出.然而,当前检测技术在数据集多样性、设备稳定性和小目标检测等方面仍存在挑战.未来需要进一步优化多模态检测技术,并结合5G与边缘计算等新兴技术,以实现更高效、精准的PPE检测与应用.
This study aims to analyze and summarize the development of personal protective equipment(PPE)detec-tion technology and its applications in construction site safety management,focusing on the role and effectiveness of sen-sors and deep learning in detection.A combination of literature review and data analysis was employed,with the Citespace system used to map recent advancements in PPE detection.By comparing sensor-based detection methods with deep learn-ing algorithms,including One-stage and Two-stage models,this paper comprehensively evaluates their practical effective-ness in PPE detection.The results indicate that deep learning techniques significantly enhance the accuracy and efficiency of PPE detection,particularly in complex environments and small-object detection.However,current detection technolo-gies still face challenges in terms of dataset diversity,equipment stability,and small-object detection.The conclusion high-lights the need for further optimization of multimodal detection technologies,along with the integration of emerging tech-nologies such as 5G and edge computing,to achieve more efficient and precise PPE detection and application.

personal protective equipmentdetectioncomputer visiondeep learningsensor

李春亚、王建华、尹土兵、卢建飞、邹晓波、叶儒桦

展开 >

武汉理工大学管理学院,武汉 430070

深圳市盐田港置业有限公司,深圳 518000

中南大学资源与安全工程学院,长沙 410083

深圳港集团有限公司,深圳 518000

展开 >

个人防护装备 检测 计算机视觉 深度学习 传感器

2024

武汉理工大学学报
武汉理工大学

武汉理工大学学报

影响因子:0.649
ISSN:1671-4431
年,卷(期):2024.46(10)