首页|基于DBO优化极限学习机的桥梁效能评估模型

基于DBO优化极限学习机的桥梁效能评估模型

Bridge Effectiveness Evaluation Model Based on DBO Optimized Extreme Learning Machine

扫码查看
构建了包含30个指标和5个层次的桥梁效能评估体系,基于G1法与可靠度理论确定了指标综合权重,收集样本运用三次样条插值方法建立了 7 100个评估样本库;运用蜣螂优化算法(DBO)优化极限学习机(ELM),建立了桥梁效能评估模型,平均误差小于2%;应用该模型对某65 m钢-混组合小箱梁桥进行效能评估.结果表明:该桥的综合效能得分为92.34,其中安全性得分93.37、适用性95.05、耐久性92.4、防护性90.04、绿色经济88.83,该桥型在投资成本、施工工期、环境影响等方面具有很好的综合效能,所做工作为桥梁的投资、设计、施工决策提供了评估方法.
A comprehensive bridge efficiency evaluation system comprising 30 indicators across five levels was intro-duced.Indicator weights were derived using the G1 method and reliability theory.A substantial sample database with 7 100entries was generated via the cubic spline interpolation method.To optimize the Extreme Learning Machines(ELM)performance,the Dung Beetle Optimization(DBO)algorithm was employed,yielding an evaluation model with an average error margin below 2%.An efficiency analysis of a 65-meter steel-composite small box girder bridge yielded an overall ef-ficiency score of 92.34.Detailed scores include:93.37 for safety,95.05 for applicability,92.4 for durability,90.04 for pro-tection,and 88.83 for green economy.These findings illustrate the high comprehensive efficiency of this bridge type,con-sidering investment cost,construction duration,and environmental impact.The proposed methodology and results provide a robust framework for informed investment,design,and construction decisions in bridge engineering.

bridge engineeringindicator systemcomprehensive weightingmachine learningextreme learn-ing machineefficacy assessment modeling

卢志芳、周祎飞、刘沐宇、张强、李奇

展开 >

武汉理工大学土木工程与建筑学院,武汉 430070

武汉理工大学道路桥梁与结构工程湖北省重点实验室,武汉 430070

中铁大桥勘测设计院集团有限公司,武汉 430050

桥梁工程 指标体系 综合权重 机器学习 极限学习机 效能评估模型

2024

武汉理工大学学报
武汉理工大学

武汉理工大学学报

影响因子:0.649
ISSN:1671-4431
年,卷(期):2024.46(11)