首页|车载-路侧相机重叠视域的行人配准研究

车载-路侧相机重叠视域的行人配准研究

A Pedestrian Alignment Method Based on the Overlapping Field of View of Vehicle-Based and Roadside Cameras

扫码查看
当前基于视觉的道路行人检测成为研究热点,针对车载相机与路侧相机联合检测道路行人的重叠视域需求,提出基于车载-路侧相机相结合的重叠视域行人图像配准方法.首先在路侧单元利用YOLOv5算法,实时测量道路车辆的具体位置,确定车载与路侧相机的位置关系,提高后续图像变换与参数优化的准确率;之后利用互信息与梯度相结合的算法,对重叠视域内的行人图像配准并拼接.实验结果表明,车辆识别平均准确率为88%,距离测量的平均响应速度在46.9 ms,通过对比不同处理算法的配准误差,基于梯度与互信息相结合的图像配准精度优于传统方法.
Currently,vision-based road pedestrian detection has become a research hotspot,and for the overlapping field of view demand of joint detection of road pedestrians by vehicle-mounted and roadside cameras,an overlapping field of view pedestrian image alignment method based on the combination of vehicle-mounted and roadside cameras is proposed.Firstly,the YOLOv5 algorithm is used in the roadside unit to measure the specific position of road vehicles in real time,to determine the positional relationship between the vehicle-mounted and roadside cameras,and to improve the accuracy of the subsequent image transformation and parameter optimization;after that,the algorithm combining the mutual informa-tion and gradient is used to align and stitch the pedestrian images in the overlapped field of view.The experimental results show that the average accuracy of vehicle recognition is 88%,and the average response speed of distance measurement is at 46.9 ms.By comparing the alignment errors of different processing algorithms,the image alignment accuracy based on the combination of gradient and mutual information is better than the traditional method.

vehicle-road coordinationYOLOv5image alignmentimage stitching

张洪昌、舒耀、杨康、曾娟

展开 >

武汉理工大学现代汽车零部件技术湖北省重点实验室,武汉 430070

武汉理工大学汽车零部件技术湖北省协同创新中心,武汉 430070

武汉理工大学湖北省新能源与智能网联车工程技术研究中心,武汉 430070

车路协同 YOLOv5 图像配准 图像拼接

2024

武汉理工大学学报
武汉理工大学

武汉理工大学学报

影响因子:0.649
ISSN:1671-4431
年,卷(期):2024.46(11)