首页|融合OOA的改进SCSO优化算法及其应用

融合OOA的改进SCSO优化算法及其应用

An Improved SCSO Optimization Algorithm Fused with OOA

扫码查看
为了提高沙猫优化算法(Sand Cat Swarm Optimization,SCSO)的收敛速度与跳出局部最优的能力,提出一种融合鱼鹰变异的改进沙猫算法(Osprey Sand Cat Swarm Optimization,OSCSO).首先利用Bernoulli映射初始化种群值以防陷入局部最优解.其次为了增加SCSO种群的多样性和跳出局部最优的能力引入自适应高斯柯西混合变异扰动与鱼鹰优化算法(Osprey Optimization Algorithm,OOA),同时采用精英反向学习机制尝试探索反向解以加快收敛速度.最后通过8个基准函数对OSCSO算法、SCSO算法和OOA算法进行测试对比实验,其结果证明改进的SCSO算法具有SCSO算法和OOA算法的优点,并将其应用在光伏功率预测上进一步验证有效性.
In order to improve the convergence speed and the ability to jump out of the local optimal optimization algo-rithm,an improved sand cat algorithm fused with osprey mutation was proposed.First,the Bernoulli map is used to initial-ize the race value to prevent falling into the local optimal solution.Secondly,in order to increase the diversity of SCSO populations and the ability to jump out of the local optimum,the adaptive Gaussian Cauchy mixed mutation perturbation and osprey optimization algorithm were introduced,and the elite reverse learning mechanism was used to try to explore the reverse solution to accelerate the convergence speed.Finally,eight benchmark functions are tested and compared with the SCSO algorithm and the OOA algorithm,and the results show that the improved SCSO algorithm has the advantages of the two algorithms and the convergence speed is faster,It is applied to PV power prediction to further verify its effective-ness.

sand cat swarm optimization algorithmBernoulli chaotic mapgaussian cauchy mixed variantsos-prey optimization algorithmelite reverse learning

邹邦杰、刘国巍

展开 >

安徽理工大学电气与信息工程学院,淮南 232001

改进沙猫群优化算法 Bernoulli映射 高斯柯西混合变异 鱼鹰算法 精英反向学习机制

2024

武汉理工大学学报
武汉理工大学

武汉理工大学学报

影响因子:0.649
ISSN:1671-4431
年,卷(期):2024.46(11)