首页|基于大核注意力改进的工业管件位姿估计

基于大核注意力改进的工业管件位姿估计

扫码查看
在物体六自由度位姿估计任务中,现有算法在真实场景下对具有弱纹理性且摆放存在遮挡的工件难以实现准确的识别.为提高工件识别精度,提出一种基于深度学习改进的位姿估计算法.该算法采用编码器-解码器架构,引入大核注意力组成视觉注意力网络,聚焦不确定性关键点,增强特征提取能力.根据关键点对应构建密集点对关系,求解出候选位姿.实验结果表明,该算法在公共数据集和自建工业管件数据集上识别准确率分别达到了57.4%和62.1%.与高密度表面编码(Surfemb)算法相比准确率分别提升了5.5%和1.9%.这验证了该算法在遮挡场景下有更高的精准度和鲁棒性.
Pose estimation of industrial pipe fittings based on large kernel attention improvement
In the task of six-degree-of-freedom pose estimation,the existing algorithms cannot accurately recognize the workpieces with weak texture and occluded placement in real settings.To improve the accuracy of workpiece recognition,an improved pose estimation algorithm based on depth learning was proposed.A large kernel attention was first added to the encoder-decoder architecture to construct a visual attention network so that the network could focus on uncertain key points and enhance feature extraction capability.Then,the candidate pose was obtained according to the key points corresponding to building a dense point-to-point relationship.The experimental results show that the recognition accuracy of the algorithm is 57.4%on the public dataset and 62.1%on the self-built industrial pipe fittings dataset,respectively.Compared with the surface embeddings(Surfemb)algorithm,the accuracy is improved by 5.5%and 1.9%,respectively.This proves that the proposed algorithm has a higher accuracy and robustness in occluded scenes.

pose estimationdense correspondencedeep learninglarge kernel attention

蒋珺阳、吴晶华、赵娜娜

展开 >

安徽建筑大学机械与电气工程学院,安徽 合肥 230009

中国科学院合肥物质科学研究院智能机械研究所,安徽 合肥 230031

位姿估计 密集对应 深度学习 大核注意力

安徽省重点实验室基金江苏省重点研发计划项目

IRKL2022KF04BE2017001-1

2024

武汉工程大学学报
武汉工程大学

武汉工程大学学报

影响因子:0.463
ISSN:1674-2869
年,卷(期):2024.46(3)