首页|基于联邦分割学习的输电线路异物检测算法

基于联邦分割学习的输电线路异物检测算法

扫码查看
异物入侵是导致输电线路故障的主要原因之一,但现有输电线路异物检测方法未能充分利用终端设备的计算能力,造成资源浪费与隐私数据泄露等问题.针对上述问题,提出了一种基于联邦分割学习的检测算法(FSLDA).该算法结合联邦学习和分割学习,提高输电线路异物检测效率和终端设备数据安全性.FSLDA通过构建可分割的小型神经网络,将计算负载分散至不同设备,减轻终端设备的运算压力,同时确保训练数据的隐私安全得到有效保障.实验结果表明:与经典联邦学习相比,FSLDA在保持预测精度的同时,终端设备的训练时间和能源消耗分别减少了10%和20%.由此可知,FSLDA在提升输电线路异物检测效率和可靠性方面具备有效性,并有助于优化系统总体性能和保障终端数据隐私安全.
Transmission line foreign object detection algorithm based on federated split learning
Foreign object intrusion is one of the primary causes of power transmission line failures.However,existing research on power transmission line foreign object detection has not fully utilized the computational capabilities of terminal devices,leading to issues such as resource waste and privacy breaches.In response to these problems,in this paper we proposed a federated split learning detection algorithm(FSLDA).This model integrates federated learning and split learning to enhance the efficiency and data security of foreign object detection systems.The FSLDA,by developing a divisible small-scale neural network,distributes the computational workload across different devices,thereby reducing the computing pressure on devices and ensuring the privacy security of training data is effectively guaranteed.Experimental results demonstrate that,compared to classic federated learning,FSLDA reduces the training time and the energy consumption by 10%and 20%,respectively,while maintaining the prediction accuracy.Thus,FSLDA is effective in enhancing the efficiency and reliability of power transmission line foreign object detection,contributing to the optimization of overall system performance and the safeguarding of data privacy.

edge computingfederated learninggrid detectionsplit learning

危欢、栗娟

展开 >

武汉工程大学计算机科学与工程学院,湖北 武汉 430205

智能机器人湖北省重点实验室(武汉工程大学),湖北 武汉 430205

边缘计算 联邦学习 线路检测 分割学习

国家自然科学基金湖北省智能机器人重点实验室开放基金武汉市知识创新专项曙光项目

62102292HBIRL 2022042023010201020440

2024

武汉工程大学学报
武汉工程大学

武汉工程大学学报

影响因子:0.463
ISSN:1674-2869
年,卷(期):2024.46(4)
  • 3