首页|基于多尺度信息蒸馏的图像超分辨率算法

基于多尺度信息蒸馏的图像超分辨率算法

扫码查看
针对卷积神经网络复杂的框架和大量的计算导致基于深度学习的图像超分辨率算法在如卫星导航系统等边缘设备上部署难的问题,提出一种新颖的多尺度信息蒸馏网络(MSIDN)重建超分辨率图像.该网络应用多阶段的策略逐步恢复出高质量的超分辨率图像,每一阶段由多尺度信息蒸馏编解码模块(MIDCB)组成.MIDCB在编码阶段对特征通道执行切分编码,能够保留浅层信息并提取有效的高频信号;而解码阶段通过增强高频信号,并使用通道注意力融合切分通道的编解码特征.MSIDN从MIDCB中学习更具辨识力的高频特征表达以及结构内容信息,不仅提高超分辨率网络的重建效果,同时也满足网络结构的轻量化.在4个公开数据集Set5、Set14、BSD100和Urban100上进行4倍放大实验,结果显示,峰值信噪比相比于增强深度残差超分辨率算法分别提升了0.89、0.02、0.01和0.34 dB,重建后图像的内容结构、边缘纹理优于其他主流超分辨率算法,证明MSIDN在单幅图像超分辨率重建中的优越性.
Image super-resolution algorithm based on multi-scale information distillation
To address the challenge of deploying image super-resolution algorithms based on deep learning on edge devices such as satellite navigation systems,due to the complexity of convolutional neural network frameworks and extensive computations,a novel multi-scale information distillation network(MSIDN)was proposed to reconstruct super-resolution images.This network utilizes a multi-stage strategy to progressively restore high-quality super-resolution images,with each stage composed of multi-scale information distillation coding-decode modules(MIDCB).In the encoding phase,MIDCB performs channel-wise split encoding on feature channels to retain shallow information and extract effective high-frequency signals.In the decoding phase,it enhances high-frequency signals and employs channel attention to merge the coding-decoding features of split channels.MSIDN learns more discriminative high-frequency feature representations and structural content information from MIDCB,not only enhancing the reconstruction performance of the super-resolution network but also meeting lightweight network structures.Conducting 4x magnification experiments on four public datasets including Set5,Set14,BSD100,and Urban100,the results showed an increase of 0.89,0.02,0.01,and 0.34 dB in peak signal-to-noise ratio compared to the enhanced deep residual super-resolution algorithm,respectively.The reconstructed images exhibited superior content structure and edge textures compared to other mainstream super-resolution algorithms,demonstrating the superiority of MSIDN in single-image super-resolution reconstruction.

image super-resolutionconvolutional neural networkmulti-scale information distillationchannel attention

邢晓敏、刘威、陈成

展开 >

武汉交通职业学院电子与信息工程学院,湖北 武汉 430065

武汉工程大学计算机科学与工程学院,湖北 武汉 430205

图像超分辨率 卷积神经网络 多尺度信息蒸馏 通道注意力

2024

武汉工程大学学报
武汉工程大学

武汉工程大学学报

影响因子:0.463
ISSN:1674-2869
年,卷(期):2024.46(6)