首页|基于t-SNE-VNWOA的船舶柴油机故障诊断

基于t-SNE-VNWOA的船舶柴油机故障诊断

扫码查看
文中提出一种基于t-SNE-VNWOA-LSSVM故障诊断模型,并进行了台架试验.试验设置了正常工况、供气不足、燃烧提前和单缸断油四种工况,将各种工况采集的缸盖振动信号进行快速傅里叶变换(FFT),提取了 13个时域和频域特征,利用t分布邻域嵌入算法(t-SNE)对数据降维、可视化故障特征.结合鲸鱼优化算法(VNWOA)对分类器(LSSVM)初始参数δ2和γ寻优,搭建其故障识别模型,将遗传算法(GA)和粒子群算法(PSO)的寻优诊断结果与之对比.结果表明:基于t-SNE-VNWOA-LSSVM故障诊断模型精度高达96.57%,且具有良好的稳定性及诊断速度.
Fault Diagnosis of Marine Diesel Engine Based on t-SNE-VNWOA
A fault diagnosis model based on t-SNE-VNWOA-LSSVM was proposed,and the bench test was carried out.The test set up four working conditions:normal working condition,insufficient air supply,early combustion and single cylinder oil cut-off.The cylinder head vibration signals collected under various working conditions were processed by fast Fourier transform(FFT),and 13 time-do-main and frequency-domain features were extracted.t-SNE was used to reduce the dimension of the data and visualize the fault features.The initial parameters δ2 and γ of the classifier(LSSVM)were optimized by the whale optimization algorithm(VNWOA),and its fault identification model was es-tablished.The diagnosis results of genetic algorithm(GA)and particle swarm optimization(PSO)were compared with them.The results show that the accuracy of fault diagnosis model based on t-SNE-VNWOA-LSSVM is as high as 96.57%,and it has good stability and diagnosis speed.

diesel enginefault diagnosist-SNEVNWOAvibration signalLSSVM

尚前明、陈家君、邱天

展开 >

武汉理工大学船海与能源动力工程学院 武汉 430063

柴油机 故障诊断 t-SNE VNWOA 振动信号 LSSVM

国家重点研发计划项目国家自然科学基金

2019YFE010460051909200

2024

武汉理工大学学报(交通科学与工程版)
武汉理工大学

武汉理工大学学报(交通科学与工程版)

CSTPCD
影响因子:0.462
ISSN:2095-3844
年,卷(期):2024.48(1)
  • 16