首页|基于CNN和DCGAN的小样本船舶辐射噪声识别方法

基于CNN和DCGAN的小样本船舶辐射噪声识别方法

扫码查看
文中建立一种基于卷积神经网络(convolutional neural networks,CNN)和深度卷积生成对抗网络(deep convolutional generative adversarial networks,DCGAN)的船舶目标识别方法.通过采集的船舶辐射噪声数据,以梅尔频谱(Mel spectrogram)作为网络的输入特征,使用DCGAN网络对频谱变换后的样本进行扩充,利用微调的VGG16(visual geometry group)网络实现船舶目标分类,实现了网络收敛速度的提升和训练时间的减少.结果表明:采用所提方法可以生成较高质量的频谱样本,提高船舶辐射噪声识别的准确率.
Identification Method of Small Sample Ship Radiated Noise Based on CNN and DCGAN
A ship target recognition method based on convolutional neural networks(CNN)and Deep Convolutional Generative Adversarial Networks(DCGAN)was established.Based on the collected ship radiated noise data,Mel spectrogram was taken as the input feature of the network,and the DC-Gan network was used to expand the samples after spectrum transformation.The fine-tuned VGG16(visual geometry group)network was used to realize ship target classification,which improved the convergence speed of the network and reduces the training time.The results show that the proposed method can generate high-quality spectrum samples and improve the accuracy of ship radiated noise i-dentification.

depth learningship noiseMel spectrumconvolution countermeasure generation net-workunderwater acoustic target recognition

何柳、张咏鸥

展开 >

武汉理工大学船海与能源动力工程学院 武汉 430063

深度学习 船舶噪声 梅尔频谱 卷积对抗生成网络 水声目标识别

2024

武汉理工大学学报(交通科学与工程版)
武汉理工大学

武汉理工大学学报(交通科学与工程版)

CSTPCD
影响因子:0.462
ISSN:2095-3844
年,卷(期):2024.48(1)
  • 9