首页|基于手机信令数据的城市通勤碳排放分析

基于手机信令数据的城市通勤碳排放分析

扫码查看
文中提出了一种在缺少用户个人社会经济属性数据的情况下,基于低频手机信令数据、POI数据、互联网位置数据,以及先验知识的面向宏观碳排放核算的出行方式判别方法,并通过基于实际通勤距离的自下而上碳排放计算方法实现不同通勤出行方式碳排放量化.基于提出的核算方法对上海市31 938人次的通勤碳排放进行了核算分析.结果表明:不同交通方式通勤碳排放量差异显著;存在高碳排放通勤群体,其样本量仅占总样本的11%,但其产生的碳排放占总量的55%.高碳排放通勤是长距离通勤和高碳排放出行方式共同影响的结果.
Analysis of Urban Commuting Carbon Emission Based on Mobile Phone Signaling Data
In the absence of user's personal socio-economic attribute data,a travel mode discrimination method for macro carbon emission accounting based on low-frequency mobile phone signaling data,POI data,Internet location data and prior knowledge was proposed.And through the bottom-up car-bon emission calculation method based on the actual commuting distance,the carbon emission of dif-ferent commuting modes was quantified.Based on the proposed accounting method,the commuting carbon emissions of 31938 people in Shanghai were calculated and analyzed.The results show that there are significant differences in commuting carbon emissions among different modes of transporta-tion.There are commuters with high carbon emissions,whose sample size accounts for only 11%of the total sample,but the carbon emissions generated by them account for 55%of the total.High-car-bon emission commuting is the result of long-distance commuting and high-carbon emission travel mode.

commuting carbon emissionsmobile phone signaling datainternet location datamode splitlife-cycle carbon emissions

于谦、刘海海、邱树荣、赵嘉雨

展开 >

长安大学运输工程学院 西安 710064

东南大学交通学院 南京 211189

中国民航大学空中交通管理学院 天津 300300

通勤碳排放 手机信令数据 互联网位置数据 方式划分 生命周期碳排放

国家自然科学基金青年科学基金

52002032

2024

武汉理工大学学报(交通科学与工程版)
武汉理工大学

武汉理工大学学报(交通科学与工程版)

CSTPCD
影响因子:0.462
ISSN:2095-3844
年,卷(期):2024.48(2)
  • 5