首页|数据缺失下的交通流预测方法研究

数据缺失下的交通流预测方法研究

扫码查看
文中提出了一种基于节点向量一生成对抗网络的交通流预测方法.通过Node2vec方法实现路网邻接关系的重构,实现路网空间相关性的深度挖掘.基于残差图聚合机制构建了路网数据空间特征的生成器,实现了根据路网中的部分已知数据推演未来路网交通流数据.采用西雅图高速路网速度数据集(Seattle)和加州路网速度数据集(PEMS)验证模型的有效性.结果表明:该模型在不同数据缺失模式、不同数据缺失率下均可以保持鲁棒的交通流预测表现.
Research on Traffic Flow Prediction Method with Missing Data
A traffic flow forecasting method based on node vector-generation countermeasure network was proposed.The reconstruction of road network adjacency relationship was realized by Node2vec method,and the deep mining of road network spatial correlation was realized.Based on the residual graph aggregation mechanism,a generator of spatial characteristics of road network data was con-structed,and the future road network traffic flow data was deduced according to some known data in the road network.Seattle Expressway Network Speed Data Set(Seattle)and California Highway Net-work Speed Data Set(PEMS)were used to verify the effectiveness of the model.The results show that the model can maintain robust traffic flow prediction performance under different data missing modes and different data missing rates.

intelligent transportation systemtraffic flow predictionNode2vecmissing datagenera-tive adversarial nets

徐东伟、朱宏俊、周磊、杨艳芳

展开 >

北京市城市交通信息智能感知与服务工程技术研究中心 北京 100084

浙江工业大学网络空间安全研究院 杭州 310023

浙江工业大学信息工程学院 杭州 310023

交通运输部科学研究院 北京 100029

展开 >

智能交通 交通流预测 Node2vec 数据缺失 生成对抗网络

国家自然科学基金青年科学基金浙江省自然科学基金浙江省自然科学基金综合交通运输大数据应用技术交通运输行业重点实验室开放课题基金北京市城市交通信息智能感知与服务工程技术研究中心开放课题基金中央级公益性科研院所基本科研业务费项目

61903334LY21F030016LY16F0300162020B1205UTIS2023KF0120221204

2024

武汉理工大学学报(交通科学与工程版)
武汉理工大学

武汉理工大学学报(交通科学与工程版)

CSTPCD
影响因子:0.462
ISSN:2095-3844
年,卷(期):2024.48(2)
  • 2