首页|基于动态时空卷积网络的车道级交通流预测

基于动态时空卷积网络的车道级交通流预测

扫码查看
文中提出一种基于动态时空卷积网络的车道级交通流预测模型(DSTCNN),通过构建车道断面节点网络拓扑结构,采用动态图卷积网络提取同一时刻预测车道断面所处的相邻车道断面和上下游车道断面交通流的状态,获取预测车道断面与不同车道断面的空间特征信息.采用扩张因果卷积与门控机制构成门控时间卷积网络提取交通流序列的时间动态特征.通过全连接(FC)网络层,将交通流时空特征相融合实现预测.结果表明:DSTCNN模型能够更好地同步捕获车道交通流的时空特性,预测精度相较于其他经典模型有显著提升,具有较好的预测性能.
Lane-level Traffic Flow Prediction Based on Dynamic Spatio-temporal Convolution Network
A lane-level traffic flow prediction model(DSTCNN)based on dynamic spatio-temporal con-volution network was proposed.By constructing the topological structure of the lane section node net-work,the dynamic graph convolution network was used to extract the traffic flow state of the adjacent lane section and the upstream and downstream lane sections where the lane section is predicted at the same time,and the spatial feature information of the predicted lane section and different lane sections was obtained.The extended causal convolution and gating mechanism were used to form a gated time convolution network to extract the time dynamic characteristics of traffic flow sequences.Through the fully connected(FC)network layer,the temporal and spatial characteristics of traffic flow were inte-grated to realize the prediction.The results show that DSTCNN model can better capture the tempo-ral and spatial characteristics of lane traffic flow synchronously,and the prediction accuracy is signifi-cantly improved compared with other classical models,so it has better prediction performance.

traffic forecastingdeep learningdynamic graph convolution

江辉、张阳、杨书敏、辛东嵘

展开 >

福建工程学院交通运输学院 福州 350118

同济大学交通运输工程学院 上海 201804

福建工程学院土木工程学院 福州 350118

交通流预测 深度学习 动态图卷积

福建省自然科学基金高联合资助项目

2022J01938

2024

武汉理工大学学报(交通科学与工程版)
武汉理工大学

武汉理工大学学报(交通科学与工程版)

CSTPCD
影响因子:0.462
ISSN:2095-3844
年,卷(期):2024.48(2)
  • 7