首页|沥青混合料动态模量预测模型研究

沥青混合料动态模量预测模型研究

扫码查看
通过室内试验,并结合时温等效原理,预测更大频率(温度)范围的动态模量值.室内试验中,利用动态剪切流变仪(DSR)对90 #基质沥青、SBS改性沥青以及EVA改性沥青进行频率扫描试验,得到不同温度和频率下的动态剪切模量值|G*|.对这三种沥青的不同级配的沥青混合料进行动态模量试验得到|E*|,并结合Williams-Landel-Ferry(WLF)方程与Sigmoid函数得到其动态模量主曲线.基于试验数据评价Hirsch模型、人工神经网络模型的预测能力,发现Hirsch模型预测能力较低,并对其做出优化,结果表明:修正后的Hirsch模型预测能力进一步提升.相比经验模型,人工神经网络模型的预测精度较高.
Research on Prediction Model of Dynamic Modulus of Asphalt Mixture
Based on the indoor test and the principle of time-temperature equivalence,the dynamic mod-ulus value in a larger frequency(temperature)range was predicted.In the indoor test,90JHJ matrix asphalt,SBS modified asphalt and EVA modified asphalt were tested by dynamic shear rheometer(DSR),and their dynamic shear modulus values at different temperatures and frequencies were ob-tained|g*|.The dynamic modulus of asphalt mixtures with different gradations of these three kinds of asphalt was tested to get|e*|,and the dynamic modulus master curve was obtained by combining Williams-Landel-Ferry(WLF)equation and Sigmoid function.Based on the experimental data,the prediction ability of Hirsch model and artificial neural network model was evaluated,and it was found that the prediction ability of Hirsch model is low.The optimization results show that the prediction a-bility of the modified Hirsch model is further improved.Compared with the empirical model,the pre-diction accuracy of artificial neural network model is higher.

asphalt mixturedynamic modulustime-temperature equivalence principleHirsch modelartificial neural network

冀立新、王立军、赵强、张峥玮

展开 >

东北林业大学土木与交通学院 哈尔滨 150040

沥青混合料 动态模量 时温等效原理 Hirsch模型 人工神经网络

国家自然科学基金面上项目

52278454

2024

武汉理工大学学报(交通科学与工程版)
武汉理工大学

武汉理工大学学报(交通科学与工程版)

CSTPCD
影响因子:0.462
ISSN:2095-3844
年,卷(期):2024.48(4)