首页|基于EMD-SSA-LSTM模型的城市轨道交通站点客流预测

基于EMD-SSA-LSTM模型的城市轨道交通站点客流预测

扫码查看
文中基于EMD和SSA算法,对LSTM神经网络进行优化,提出一种新的组合预测模型.利用EMD算法降低数据噪点的干扰,将短时客流数据分解为多个IMF和一个残差.利用SSA算法优化LSTM网络的隐含层神经元个数、学习率以及迭代次数.利用优化后的LSTM模型对各个IMF进行预测,由各IMF的预测结果求和得到最终的预测值.利用杭州市客流量最大的站点火车东站客流量数据进行验证,并与BP神经网络、LSTM神经网络以及SSA-LSTM模型的预测结果相比较.结果表明:在针对工作日和非工作日的短时客流预测中,EMD-SSA-LSTM组合模型的预测误差均低于其他3种模型,且工作日与非工作日的预测值与真实值之间可决系数分别为0.999 5,0.998,验证了本文提出的组合模型的有效性,并且提高了预测精度.
Passenger Flow Prediction of Urban Rail Transit Stations Based on EMD-SSA-LSTM Model
Based on EMD and SSA algorithms,the LSTM neural network was optimized and a new combined forecasting model was proposed.EMD algorithm was used to reduce the interference of data noise,and the short-term passenger flow data was decomposed into multiple IMF and a residual.The SSA algorithm was adopted to optimize the number of hidden layer neurons,learning rate and itera-tion times of LSTM network.The optimized LSTM model was used to predict each IMF,and the final prediction value was obtained by summing the prediction results of each IMF.The passenger flow data of East Railway Station,the station with the largest passenger flow in Hangzhou,was used to verify the results,and compared with the prediction results of BP neural network,LSTM neural network and SSA-LSTM model.The results show that the forecasting errors of EMD-SSA-LSTM combined model are lower than the other three models,and the determinable coefficients between the predicted value and the real value of working days and non-working days are 0.9995 and 0.998 respectively,which verifies the effectiveness of the combined model proposed in this paper and improves the fore-casting accuracy.

short-term passenger flow forecastEMD and SSA algorithmsLSTM neural networkcombined prediction model

何勇、张开雯

展开 >

重庆科技学院数理与大数据学院 重庆 401331

短时客流预测 EMD和SSA算法 LSTM神经网络 组合模型

重庆市科技局自然科学基金中国博士后第71批面上项目重庆市教委科学技术研究计划重点项目

CSTB2022NSCQ-MSX02562022M712619KJZD-K202201502

2024

武汉理工大学学报(交通科学与工程版)
武汉理工大学

武汉理工大学学报(交通科学与工程版)

CSTPCD
影响因子:0.462
ISSN:2095-3844
年,卷(期):2024.48(5)