首页|基于Pony边缘检测算法的隧道车辆识别研究

基于Pony边缘检测算法的隧道车辆识别研究

扫码查看
文中研究了一种Pony边缘检测算法以提升隧道内车辆目标检测和识别的精度.采用中值滤波、USM技术等技术对隧道视频图像进行预处理加强边缘特征,应用算法的Pony算子对其进行梯度检测,从而获得车辆目标边缘特征,基于环境亮度不均(高斯噪声)、传感器性能误差(椒盐噪声)、电路元器干扰(泊松噪声)和信道干扰(斑点噪声)等四种隧道视频噪声图像,验证分析Pony边缘检测算法与多种传统算子边缘检测算法在不同噪声条件下的检测效果.结果表明:Pony边缘检测算法在四种环境噪声条件下的正检率分别达到95.21%、95.42%、96.04%和92.02%,重检率、误检率和漏检率等指标均优于其他方法.
Research on Tunnel Vehicle Recognition Based on Pony Edge Detection Algorithm
A Pony edge detection algorithm was studied to improve the accuracy of vehicle target detec-tion and recognition in tunnels.The median filter and USM technology were used to preprocess the tunnel video image to enhance the edge features,and the Pony operator of the algorithm was used to detect the gradient,so as to obtain the edge features of the vehicle target.Based on four kinds of tun-nel video noise images,such as uneven ambient brightness(Gaussian noise),sensor performance error(salt and pepper noise),circuit element interference(Poisson noise)and channel interference(speckle noise),the detection effects of Pony edge detection algorithm and many traditional operator edge de-tection algorithms under different noise conditions were verified and analyzed.The results show that the positive detection rates of Pony edge detection algorithm are 95.21%,95.42%,96.04%and 92.02%respectively under four kinds of environmental noise conditions,and the repeated detection rate,false detection rate and missed detection rate are better than other methods.

traffic engineeringhighway tunnelsPony edge detection algorithmedge detectionam-bient noisevehicle recognition

杨榆璋、王碧珺、梁洪健、李可、孙涛、孙瑞玮

展开 >

云南省交通投资建设集团有限公司 昆明 650103

昆明理工大学交通工程学院 昆明 650500

交通工程 高速公路隧道 Pony边缘检测算法 边缘检测 环境噪声 车辆识别

2024

武汉理工大学学报(交通科学与工程版)
武汉理工大学

武汉理工大学学报(交通科学与工程版)

CSTPCD
影响因子:0.462
ISSN:2095-3844
年,卷(期):2024.48(6)