首页|一种双重注意力特征融合的小目标检测算法

一种双重注意力特征融合的小目标检测算法

扫码查看
文中提出了一种实海域高精度的小目标检测算法.算法以YOLOv3作为基础模型,通过增加高分辨率特征层保留更多小尺度目标的细节特征信息.利用跳跃残差连接改进了 YOLOv3的多尺度特征融合结构,以降低特征融合导致的目标特征损失,同时增强不同尺度特征图之间的信息交互.设计了双重注意力特征融合模块聚合局部特征与全局特征并细化融合特征图,降低融合特征图的混叠效应.在实海域数据集和VOC2007数据集上进行了验证,结果表明:提出的方法能够有效地提升模型的检测精度,尤其是小尺度目标的检测精度提升约15%,同时检测时间未出现明显增加.
A Small Object Detection Algorithm Based on Dual Attention Feature Fusion
A high-precision small target detection algorithm in real sea area was proposed.Based on YOLOv3 as the basic model,the algorithm preserved more detailed feature information of small-scale targets by adding high-resolution feature layers,and improved the multi-scale feature fusion structure of YOLOv3 by using jumping residual connection to reduce the loss of target features caused by fea-ture fusion.Meanwhile,the information interaction between feature maps of different scales was en-hanced.A dual attention feature fusion module was designed to aggregate local features and global features and refine the fused feature maps to reduce the aliasing effect of the fused feature maps.The results show that the proposed method can effectively improve the detection accuracy of the model,es-pecially the detection accuracy of small-scale targets by about 15%,and the detection time has not in-creased significantly.

object detectionmulti-scale feature fusionintelligent shipattention mechanismYOLOv3

唐炜、冯辉、徐海祥

展开 >

武汉理工大学船海与能源动力工程学院 武汉 430063

武汉理工大学高性能船舶技术教育部重点实验室 武汉 430063

目标检测 多尺度特征融合 智能船舶 注意力机制 YOLOv3

2024

武汉理工大学学报(交通科学与工程版)
武汉理工大学

武汉理工大学学报(交通科学与工程版)

CSTPCD
影响因子:0.462
ISSN:2095-3844
年,卷(期):2024.48(6)