首页|基于包容性检验的黄土高填方工后沉降组合预测方法研究

基于包容性检验的黄土高填方工后沉降组合预测方法研究

扫码查看
文中针对建立黄土高填方场地工后沉降组合预测模型时面临的单项模型遴选和权重系数分配等问题,提出了基于包容性检验及最优加权法的组合预测方法.基于工后沉降实测数据,建立了双曲线函数、对数函数等七种单项预测模型;根据各单项模型预测精度的优劣进行排序,逐步进行包容性检验,遴选出合适的单项模型;采用不同权重系数分配方法将遴选出的各模型进行组合,以内拟合误差及外推预测误差最小化为原则,优选出最佳的组合方法.结果表明:通过按优劣次序逐步包容性检验的思路可筛选出合适的单项模型,采用最优加权法对单项模型进行组合预测的效果最佳,与传统预测方法相比,降低了参与组合的单项模型数量,提高了预测精度和预测效率.
Study on Combined Prediction Method of Post-construction Settlement of Loess High Fill Based on Inclusion Test
Aiming at the problems of single model selection and weight coefficient distribution when es-tablishing the combined prediction model of post-construction settlement of loess high fill site,a com-bined prediction method based on inclusiveness test and optimal weighting method was proposed.Based on the measured data of post-construction settlement,seven single prediction models such as hyperbolic function and logarithmic function were established.According to the prediction accuracy of each single model,the order was sorted,and the inclusion test was carried out step by step to select the appropriate single model.Different weight coefficient distribution methods were used to combine the selected models,and the best combination method was selected based on the principle of minimi-zing the inner fitting error and extrapolation prediction error.The results show that the suitable single model can be screened out by the idea of step-by-step inclusion test according to the order of advanta-ges and disadvantages,and the best combination prediction effect of single model is achieved by using the optimal weighting method.Compared with the traditional forecasting method,it reduces the num-ber of single models participating in the combination and improves the forecasting accuracy and effi-ciency.

deep-filled groundspost-construction settlementencompassing testcombined prediction modeloptimal weighting

黄鑫、于永堂、孙茉、郑建国、曹静远、王晶晶

展开 >

西安建筑科技大学土木工程学院 西安 710055

中联西北工程设计研究院有限公司 西安 710077

中国电建集团西北勘测设计研究院有限公司 西安 710065

机械工业勘察设计研究院有限公司 西安 710021

展开 >

高填方场地 工后沉降 包容性检验 组合预测模型 最优加权法

2024

武汉理工大学学报(交通科学与工程版)
武汉理工大学

武汉理工大学学报(交通科学与工程版)

CSTPCD
影响因子:0.462
ISSN:2095-3844
年,卷(期):2024.48(6)