首页|基于卷积神经网络的楚国纺织品服装元素迁移

基于卷积神经网络的楚国纺织品服装元素迁移

扫码查看
文章以楚国纺织品为研究对象,通过目标内容图轮廓提取和线条增强,生成具有楚国纺织品风格的图像;提出基于VGG-19 优化模型的楚国纺织品纹样图像迁移方法,克服了图案组合创新设计、自动提取数量少和资源大量损耗等困难.研究表明:该算法在楚国纺织品风格迁移中的表现优于现有方法,保留了纺织品艺术风格的完整性,并成功地将迁移的纹样应用到不同的服装品类中,有利于传承和发展中国优秀传统服饰文化,为服装设计者降低了试错成本并提供新的思路.
Element Migration of Textiles and Clothing in Chu State based on Convolutional Neural Network
This paper takes Chu textile as the research object.An image with Chu textile style is generated by extracting the contours of the target content diagram and enhancing the lines.An image migration method of Chu textile pattern based on VGG-19 optimization model is presented.Overcame the difficulties of innovative design of pattern combination,low number of automatic extraction and large loss of resources.The results show that this algorithm is better than the existing method in Chu textile style migration.Th e integrity of the textile art style is preserved.The transplanted patterns were successfully applied to different clothing types.It is conducive to the inheritance and development of China's excellent traditional clothing culture.It reduces the cost of trial and error and pro vides new ideas for clothing designers.

convolutional neural networkdeep learningelements of Chu state textilesmodern textilesstyle transfer

沙莎、李怡、魏宛彤、刘瀚旗、邓中民

展开 >

武汉纺织大学 设计创新与纤维科学研究院,湖北 武汉 430073

武汉纺织大学 服装数字化工程技术研究中心,湖北 武汉 430073

武汉纺织大学 服装学院,湖北 武汉 430073

武汉纺织大学 纺织新材料与先进加工技术国家重点实验室,湖北 武汉 430200

展开 >

卷积神经网络 深度学习 楚国纺织品元素 现代纺织品 风格迁移

国家自然科学基金湖北省哲学社会科学研究项目湖北省教育厅科学研究计划重点项目湖北省服装信息化工程技术研究中心开放基金纺织服装福建省高校工程研究中心开放基金福建省新型功能性纺织纤维及材料重点实验室开放基金

6180228522ZD083D20201704184084006MJFZ18103FKLTFM1813

2024

武汉纺织大学学报
武汉纺织大学

武汉纺织大学学报

影响因子:0.316
ISSN:2095-414X
年,卷(期):2024.37(1)
  • 16