首页|基于VMD的长江航运干散货运价指数预测

基于VMD的长江航运干散货运价指数预测

扫码查看
我国长江航运干散货运价指数(YBFI)呈现非线性、非平稳性等波动特征,传统的单一预测模型和组合预测法难以获得较好的预测效果.为此,基于"分解-重构-预测-集成"的思想,提出一种基于变分模态分解(VMD)的YBFI组合预测模型构建方法.选用变分模态分解(VMD)将原始运价指数序列分解为多个模态分量,并通过聚类分析将分量重构为高频、中频、低频和趋势项,对重构后的序列波动特点进行解释.选用BPNN对高频项和低频项进行预测,采用PSO-SVM方法对中频项和趋势项进行预测,最后将重构项预测结果相加集成得到最终预测值.实证结果表明,构建的基于VMD的组合预测模型比SVM、BPNN、ARIMA、PLS等单一预测模型,以及未优化的VMD组合模型、VMD-BP等组合模型具有更好的预测效果.
Combined Forecasting Model for Yangtze River Bulk Freight Index Based on VMD
Yangtze River Bulk Freight Index(YBFI)possess non-linear,non-stationary fluctuating traits which makes it difficult to predict accurately with traditional single prediction models and combination forecasting method.Therefore,following the idea of"decompose-restruct-subsequence forecasting-ensemble",a YBFI combined prediction model construction meth-od based on variational mode decomposition algorithm(VMD)was proposed.This paper decomposed the times series YBFI into high multiple modal components by using VMD.And then the modal components were reconstructed into high frequency,medium frequency,low frequency and trend sequences with clustering analysis method,and series fluctuating features were interpreted ac-cording to reconstruction outcome.Based on the comparison of multiple forecasting models,the high-frequency and low-fre-quency sequences are predicted using BPNN,and the medium-frequency and trend terms are predicted using the PSO-SVM method.Finally,integrated prediction value could be obtained by adding the reconstructed sequences predictions together.The empirical results showed that the combined forecast model based on VMD constructed in this paper has better prediction effect than single model,such as BPNN,SVM,PSO-SVM,ARIMA,PLS,and unoptimized VMD combined model as well as VMD-BP combination model.

freight indexcombined model forecastingvariational mode decompositionneural networkparticle swarm op-timization algorithm-support vector machine

黄建华、刘睿涵

展开 >

福州大学 经济与管理学院,福建 福州 350108

运价指数 组合模型预测 变分模态分解 神经网络 粒子群优化算法-支持向量机

国家社科基金一般项目

20BGL003

2024

武汉理工大学学报(信息与管理工程版)
武汉理工大学

武汉理工大学学报(信息与管理工程版)

CSTPCD
影响因子:0.37
ISSN:2095-3852
年,卷(期):2024.46(1)
  • 20