首页|多中心开放式电动货车冷链物流配送路径优化

多中心开放式电动货车冷链物流配送路径优化

扫码查看
为了实现物流企业的降本增效和绿色发展,考虑载重、电量、时间窗约束和电池动态耗电率、产品新鲜度损耗、增加配送中心充电功能和多中心联合配送等因素,提出了开放式多配送中心联合配送的电动货车冷链物流配送路径问题.以总成本最小为目标函数,建立该问题的混合整数规划模型,设计改进的遗传算法进行求解,优化电动货车冷链物流配送路径和充电方案.结果表明:开放式多中心联合配送能更好地满足客户时间窗约束并降低物流运营成本;增加配送中心的充电功能可以降低充电站短缺对物流企业运营的影响;考虑车辆载重动态影响耗电率能准确反映出配送途中车辆电量消耗;改进遗传算法求解算例成本更低,充电方案和路径规划更优.
Optimization of Multi-depot Open Electric Truck Cold Chain Logistics Distribution Route
In order to achieve logistics enterprises to reduce costs and increase efficiency and green development,considering such factors as load,power,time window constraint,battery dynamic power consumption rate,product freshness loss,increasing the charging function of depot and multi-depot joint distribution,the cold chain logistics distribution route problem of open multi-depot joint distribution of electric trucks was proposed.Taking the minimum total cost as the objective function,a mixed inte-ger programming model was established for this problem,and an improved genetic algorithm was designed to solve it,so as to op-timize the distribution route and charging scheme of cold chain logistics for electric trucks.The results show that open multi-center joint distribution can better meet customer time window constraints and reduce logistics operating costs;increasing the charging function of depots can reduce the impact of the shortage of charging stations on the operation of logistics enterprises.Considering the dynamic effect of vehicle load on the power consumption rate,the power consumption of vehicles during distribu-tion can be accurately reflected.The cost of the improved genetic algorithm is lower and the charging and path planning is better.

cold chain logisticsmulti-depot joint distributionelectric truckdistribution route optimizationimproved genetic algorithmdynamic discharging

杨雪、陈宁、马奕

展开 >

武汉理工大学 交通与物流工程学院,湖北 武汉 430063

武汉理工大学三亚科教创新园,海南 三亚 572000

武汉理工大学 水路交通控制全国重点实验室,湖北 武汉 430063

交通运输部长江航务管理局,湖北 武汉 430014

展开 >

冷链物流 多中心联合配送 电动货车 配送路径优化 改进遗传算法 动态耗电率

海南重大科技项目

ZDKJ2020012

2024

武汉理工大学学报(信息与管理工程版)
武汉理工大学

武汉理工大学学报(信息与管理工程版)

CSTPCD
影响因子:0.37
ISSN:2095-3852
年,卷(期):2024.46(1)
  • 13