首页|基于贝叶斯线性回归的造价预测模型

基于贝叶斯线性回归的造价预测模型

扫码查看
为在项目前期准确快速地预测高速公路造价,运用贝叶斯线性回归方程对造价进行预测.首先,识别高速公路造价影响因素,建立造价预测指标体系;其次,对收集的高速公路造价数据统一处理后,基于贝叶斯线性回归方程建立造价预测模型,并与BP神经网络预测模型进行预测效果对比;最后,利用Matlab进行仿真训练和预测.结果表明:相较于BP神经网络模型,贝叶斯线性回归模型具有更高的预测精度和稳定性,其预测值误差控制在5%以内,MAPE为2.29%,决定系数为0.925,可见贝叶斯回归模型的拟合度高、预测效果好,具有良好的可行性和适用性,可以应用于高速公路项目的造价预测.
Cost Prediction Model Based on Bayesian Linear Regression
To accurately and quickly predict the cost of highways in the early stages of the project,the Bayesian linear re-gression equation was used to predict the cost.Firstly,the influencing factors of highway cost were identified,and the cost pre-diction index system was established.Secondly,after the unified processing of the collected highway cost data,the cost predic-tion model was established based on the Bayesian linear regression equation,and the prediction effect was compared with the BP neural network prediction model.Finally,Matlab was used for simulation training and prediction.The results show that compared to the BP neural network model,the Bayesian linear regression model has higher prediction accuracy and stability,with a predic-tion error controlled within 5%,a MAPE of 2.29%,and a determination coefficient of 0.925.It can be seen that the Bayesian regression model has high fitting degree and good prediction effect,and the model has good feasibility and applicability,which can be applied to the cost prediction of highway projects.

cost predictionexpresswayBayesian linear regressionBP neural networkMAPE

袁剑波、郭平、曾恬宁

展开 >

长沙理工大学 交通运输工程学院,湖南 长沙 410114

造价预测 高速公路 贝叶斯线性回归 BP神经网络 MAPE

湖南省交通运输厅科技进步与创新项目湖南省研究生科研创新项目

202039CX20200826

2024

武汉理工大学学报(信息与管理工程版)
武汉理工大学

武汉理工大学学报(信息与管理工程版)

CSTPCD
影响因子:0.37
ISSN:2095-3852
年,卷(期):2024.46(1)
  • 15