首页|电子商务快递末端配送模式优化研究

电子商务快递末端配送模式优化研究

扫码查看
针对电子商务末端快递配送过程中车辆配送路径复杂和车辆利用率低等问题,设计了综合考虑车辆行驶距离和车辆装载率的多目标车辆路径优化模型,利用改进的非最优动态粒子群算法进行求解,并结合K-Means聚类来降低求解维度.通过改进学习因子和最优解更新策略,增强了粒子群算法的全局寻优能力,加快了收敛速度.最后,利用Solomon数据集中的R101 样例验证了算法的有效性.结果表明:企业对用户进行合理归类后再规划车辆配送路径,可有效减少车辆行驶距离,提升车辆装载率,进而提升企业的配送效率,减少企业的运营成本,该研究可为电子商务环境下"最后一公里"配送模式的创新提供理论依据和决策支持.
Research on Optimization of E-commerce Express Terminal Distribution Mode
A multi-objective vehicle path optimization model was designed to address the issues of complex vehicle delivery paths and low vehicle utilization in the process of e-commerce express delivery.The model comprehensively considered both the distance traveled by vehicles and the loading rate of vehicles.An improved non-optimal dynamic particle swarm optimization al-gorithm was used to solve the problem,and K-Means clustering was combined to reduce the solution dimension.Improving the learning factor and optimal solution update strategy,the global optimization ability of particle swarm optimization algorithm has been enhanced,and the convergence speed has been accelerated.Finally,the effectiveness of the algorithm was validated using the R101 example from the Solomon dataset.The results indicate that companies can effectively reduce vehicle travel distance,increase vehicle loading rate,and then to improve distribution efficiency and reduce operating costs by reasonably classifying us-ers and then planning vehicle delivery routes.This conclusion can provide theoretical basis and decision support for the innovation of the"last mile"delivery mode in the e-commerce environment.

e-commerceexpress deliveryvehicle routing planningKMND-PSO algorithmmuti-objective optimiza-tion

朱珠、温召成、臧洁

展开 >

辽宁大学 信息学院,辽宁 沈阳 110016

电子商务 快递配送 车辆路径规划 KMND-PSO算法 多目标优化

国家自然科学基金青年项目教育部人文社会科学基金青年项目

7210209618YJC630276

2024

武汉理工大学学报(信息与管理工程版)
武汉理工大学

武汉理工大学学报(信息与管理工程版)

CSTPCD
影响因子:0.37
ISSN:2095-3852
年,卷(期):2024.46(1)
  • 19