首页|基于混合深度学习的短期风电预测研究

基于混合深度学习的短期风电预测研究

扫码查看
针对现有风电预测精度低的问题,提出了一种基于IEMD和混合深度学习模型的超短期风力发电预测模型.首先,提出基于IEMD对原始风电数据进行分解,从而分解出电力高频、中频、低频及其趋势特征.其次,基于最小二乘支持向量机对电力中频、低频及其趋势特征进行预测,并基于LSTM网络预测风电高频特征.最后,根据特征叠加规则,获得最终预测结果.实验阶段,以中国某电力公司发布的风电数据集进行实验,所提模型MAPE、MAE、RMSE等指标更优,实验结果验证了所提模型的可行性和有效性.该模型为混合智能电网智能化服务以及新能源调度规划的应用发展提供了一定借鉴作用.
Research on Short-term Wind Power Forecasting Based on Hybrid Deep Learning
Aiming at the problem of low accuracy of existing wind power forecasting,an ultra short term wind power forecas-ting model based on IEMD and hybrid deep learning model was proposed.Firstly,the original wind power data was decomposed based on IEMD,so as to decompose the power high-frequency,intermediate frequency,low-frequency and trend characteris-tics.Secondly,the power mid frequency,low frequency and trend characteristics were predicted based on the least squares sup-port vector machine,and the wind power high-frequency characteristics were predicted based on LSTM network.Finally,the fi-nal prediction result was obtained according to the feature superposition rule.In the experiment stage,the wind power data set re-leased by a Chinese power company was used for the experiment.MAPE,MAE,RMSE and other indicators of the proposed mod-el were better.The experimental results verify the feasibility and effectiveness of the proposed model.The model provides a cer-tain reference for the intelligent service of hybrid smart grid and the application and development of new energy dispatching plan-ning.

smart gridwind power forecastdata decompositionfeature extractionlong short-term memory networksupport vector machines

余铮、金波、焦尧毅、陈璞、陈家璘

展开 >

国网湖北省电力有限公司信息通信公司,湖北 武汉 430077

智能电网 风电预测 数据分解 特征提取 长短时记忆网络 支持向量机

2024

武汉理工大学学报(信息与管理工程版)
武汉理工大学

武汉理工大学学报(信息与管理工程版)

CSTPCD
影响因子:0.37
ISSN:2095-3852
年,卷(期):2024.46(1)
  • 10