首页|中国科创板股票价格变动预测模型研究

中国科创板股票价格变动预测模型研究

扫码查看
为更好地预测中国科创板股票价格变动走势,使用随机森林和支持向量机两种机器学习算法对中国股票市场的历史数据进行分析,选择318 支科创板股票作为样本数据集,并以华兴源创(688001.SH)为例,采用支持向量机和随机森林的原理和算法流程构建数据样本,比较基于昨日收盘价和基于前几日收盘价两种思路的预测效果.结果表明:当基于思路1 预测时,随机森林模型的正确率为65.55%,支持向量机模型的正确率为70.59%;当基于思路2 预测时,随机森林模型的正确率为 43.70%,支持向量机模型的正确率为62.18%.在模型选择上,支持向量机对于股市预测水平更加切合,应更多地采用向量机模型实现对中国科创板股票的预测.在指标选取上,当日各项指标要比历史收盘价数据更加具有参考性,且未来结果不仅受到历史趋势的影响,还可能受到当日的各项指标影响.
Research on the Prediction Model of Stock Price Changes of China′s Science and Technology Innovation Board
In order to better predict the price changes of China′s sci-tech innovation board stocks,two machine learning al-gorithms,Random Forest and Support Vector Machine,were used to analyze the historical data of the Chinese stock market.318 Science and Technology Innovation Board stocks were selected as the sample dataset.Taking Huaxing Yuanchuang(688001.SH)as an example,the principles and algorithm processes of support vector machine and random forest were used to construct data samples,and the predictive effects were compared based on two approaches:yesterday′s closing price and the previous days′closing price.The results show that when predicting based on idea one,the accuracy of the random forest model is65.55%,and the accuracy of the support vector machine model is 70.59%.When predicting based on the second idea,the accuracy of the random forest model is43.70%,and the accuracy of the support vector machine model is62.18%;In terms of model selection,support vector machines are more suitable for predicting the level of stock market,and more vector machine models should be used to achieve prediction of China′s sci-tech innovation board stocks;In terms of indicator selection,the various indicators of the day are more informative than historical closing price data;And future results may not only be influenced by historical trends,but also by various indicators of the day.

changes in stock pricesprediction modelrandom forestsupport vector machinesci-tech innovation board stocks

褚建平、孙艳琳、薛茜

展开 >

武汉理工大学 安全科学与应急管理学院,湖北 武汉 430070

武汉理工大学 经济学院,湖北 武汉 430070

武汉理工大学 法学与人文社会学院,湖北 武汉 430070

中国城乡公共治理研究中心,湖北 武汉 430070

展开 >

股票价格变动 预测模型 随机森林 支持向量机 科创板股票

2024

武汉理工大学学报(信息与管理工程版)
武汉理工大学

武汉理工大学学报(信息与管理工程版)

CSTPCD
影响因子:0.37
ISSN:2095-3852
年,卷(期):2024.46(2)
  • 14