首页|基于EEMD-DRL的铁矿石期货交易策略研究

基于EEMD-DRL的铁矿石期货交易策略研究

扫码查看
随着铁矿石等大宗商品日益金融化,越来越多的投资者参与到铁矿石期货交易中,交易策略成为投资决策中的重点研究问题.针对复杂和动态的铁矿石交易环境,设计一种基于集合经验模态分解(EEMD)与深度强化学习(DRL)方法的铁矿石期货交易策略.首先,采用EEMD方法深入剖析铁矿石期货价格的特征,综合考虑分解后的特征,构建基于马尔可夫决策过程的铁矿石期货交易环境;其次,采用多种DRL方法产生铁矿石期货交易策略,并利用累计收益率优化DRL产生的交易策略;最后,采用夏普比率筛选出各交易周期内的最优策略,形成全交易周期的最优策略组合.实验结果表明:提出的交易策略在确保收益率最大化的基础上具有较强的稳健性.
Iron Ore Futures Trading Strategy Based on EEMD and DRL
With the financialization of iron ore and other commodities,more and more investors are involved in iron ore fu-tures trading.The trading strategy has become a key research topic in investment decision-making.Due to the volatile price fluctuations of iron ore futures,an iron ore futures trading strategy is designed based on ensemble empirical mode decomposition(EEMD)and deep reinforcement learning(DRL).Firstly,the EEMD method is used to decompose the characteristics of iron ore futures price,and the trading environment of iron ore futures based on Markov decision process is constructed by considering the characteristics after decomposition.Secondly,a variety of DRLs are used to generate iron ore futures trading strategies,which are optimized by the cumulative return.Finally,the Sharpe ratio is used to screen out the optimal strategy in each trading cycle,and the optimal strategy combination in the whole trading cycle is formed.The experimental results show that the proposed strate-gy has strong robustness based on ensuring the maximization of return.

Iron ore futuresdeep reinforcement learningMarkov decision processtrading strategyensemble empirical modal decomposition

刘仕强、潘威旭、丁佩佩

展开 >

福州大学 经济与管理学院,福建 福州 350108

铁矿石期货 深度强化学习 马尔可夫决策过程 交易策略 集合经验模式分解

国家自然科学基金面上项目

71871064

2024

武汉理工大学学报(信息与管理工程版)
武汉理工大学

武汉理工大学学报(信息与管理工程版)

CSTPCD
影响因子:0.37
ISSN:2095-3852
年,卷(期):2024.46(4)