首页|基于MMoE-BiLSTM的非侵入式用电设备检测方法研究

基于MMoE-BiLSTM的非侵入式用电设备检测方法研究

扫码查看
非侵入式用电设备检测能够以低成本的方式获取详细的用户用电数据,有助于提高居民用户用电意识,减少居民用电浪费现象,以达到节能减排的目的.针对现有的基于低频数据的单任务非侵入式用电设备检测方法存在的精度低和特征淹没等问题,提出了一种基于多门控混合专家网络(multi-gate mixture-of-experts network,MMoE)和双向长短期记忆网络(bidirectional long short-term memory network,BiLSTM)相结合的多任务非侵入式用电设备检测模型.首先,利用MMoE实现底层参数的软共享,学习不同电器之间的耦合特征,充分挖掘用电设备负荷特征;然后,利用BiLSTM网络作为子任务层,在一个模型中同时输出各电器的功率序列.在UK-DALE(UK recording domestic appliance-level electricity)公开数据集上的实验结果表明,该方法在各电器的检测指标上均优于现有的几种单任务方法,验证了该方法具有良好的用电设备检测性能.
Research on non-intrusive electrical equipment detection method based on MMoE-BiLSTM
Non-intrusive electrical equipment device detection can obtain detailed customer electricity data in a low-cost way,which helps to raise the awareness of electricity consumption among residential customers and reduce the wastefulness of residential electricity consumption in order to achieve the goal of energy saving and emission reduction.Aims at the problems of low accuracy and feature flooding of existing single-task non-intrusive electrical equipment detection methods based on low-frequency data,a multi-task non-invasive electrical equipment detection model based on the combination of multi-gate mixture-of-experts network(MMoE)and bidirectional long short-term memory network(BiLSTM)is proposed.The MMoE network is used to achieve soft sharing of the underlying parameters,learn the coupling characteristics between different electrical appliances,and fully exploit the load characteristics of the electrical appliances.The BiLSTM is used as a subtask layer to output the power sequences of all electrical appliances simultaneously in one model.The experimental results on UK-dale public dataset show that the proposed method outperforms the existing single-task methods in the detection indexes of various electrical appliance,which verifies that the proposed method has good electrical equipment detection performance.

non-intrusivedeep learningmulti-gate mixture-of-experts networkbidirectional long short-term memory networks

刘辉、高放、赵国

展开 >

湖北工业大学新能源及电网装备安全监测湖北省工程研究中心,湖北武汉 430068

非侵入式 深度学习 多门控混合专家网络 双向长短期记忆网络

国家自然科学基金

61903129

2024

武汉大学学报(工学版)
武汉大学

武汉大学学报(工学版)

CSTPCD北大核心
影响因子:0.621
ISSN:1671-8844
年,卷(期):2024.57(3)
  • 20