首页|基于随机森林的三江平原地区作物分类研究

基于随机森林的三江平原地区作物分类研究

扫码查看
为了对三江平原广大地区的农田进行有效监测和管理,提出了一种高效的作物分类方法.在Google Earth Engine中使用Sentinel-2卫星影像,基于不同分类特征的随机森林分类模型对三江平原地区的地物进行分类;在此基础上,对分类模型进行精度评价,选择最优分类特征的模型对三江平原地区水稻、玉米、大豆种植区进行识别与提取.研究发现,基于所提方法提取的水稻、大豆种植区总面积与统计年鉴数据高度一致,提取的玉米种植区面积为实际播种面积的0.83倍.结果表明,所提方法可以从Sentinel-2遥感影像中有效提取出不同作物的种植区.
Study on crop classification in Sanjiang Plain based on random forest
In order to monitor and manage farmland effectively in Sanjiang Plain,an efficient method for crop classification was proposed in this paper.Sentinel-2 satellite images in Google Earth Engine were used,and the ground objects in Sanjiang Plain were classified based on random forest classification model with different classification features.On this basis,the accuracy of the classification model was evaluated,and the model with the best classification features was selected to identify and extract the rice,maize and soybean planting areas in Sanjiang Plain.It was found that the total planting areas of rice and soybean extracted based on this method were highly consistent with the data of the statistical yearbook,and the maize planting area extracted based on this method was 0.83 times of the actual sown area.The results show that the proposed method can effectively extract the planting areas of different crops from Sentinel-2 remote sensing images.

Sanjiang Plaincrop classificationSentinel-2high precisionrandom forest

高若楠、施佳子、樊红、贾永红

展开 >

武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079

中国工商银行股份有限公司软件开发中心,北京 100032

武汉大学遥感信息工程学院,湖北武汉 430079

三江平原 作物识别 Sentinel-2 高精度 随机森林

国家重点研发计划国家重点研发计划中国工商银行科技项目

2023YFE01104002022YFC3002702KJ20212166

2024

武汉大学学报(工学版)
武汉大学

武汉大学学报(工学版)

CSTPCD北大核心
影响因子:0.621
ISSN:1671-8844
年,卷(期):2024.57(4)
  • 1
  • 31