首页|基于特征矩阵相似度的圆棒类产品表面缺陷检测方法

基于特征矩阵相似度的圆棒类产品表面缺陷检测方法

扫码查看
为了解决质检实验室人工抽检环节在圆棒类产品表面缺陷检测中效率低、精度低、标准不统一的问题,提出了一种基于特征矩阵相似度的产品表面缺陷检测方法.首先,通过对产品表面缺陷进行分析,使用基于最大类间方差的多阈值分割法对产品表面缺陷区域进行分割,并从形状轮廓、颜色、位置和区域特征等多个方面对缺陷进行特征提取,建立各类缺陷图像的数据特征分布.再将特征各异、数量不一的缺陷特征统一转换为特征检测矩阵形式,采用余弦相似度来度量其与产品表面缺陷特征矩阵之间的相似性,从而判断产品是否存在缺陷,并对产品表面缺陷进行分类.以卷包产品为例,采集了 4 820张产品样本图像进行缺陷检测实验,结果表明,使用所提方法对产品表面缺陷进行检测的平均准确率为97.48%、误检率为3.30%、漏检率为0.77%、Kappa系数为0.955 7,验证了该方法的有效性和一致性.
Surface defect detection method for round rob products based on similarity of feature matrix
To solve the problems of low efficiency,low precision,and inconsistent standards in the surface de-fect detection of round rod products in the manual sampling inspection process of quality inspection laboratory,a product surface defect detection method based on feature matrix similarity is proposed.Firstly,through analy-sis of product surface defects,the multi-threshold segmentation method based on the maximum inter-class vari-ance is used to segment the product surface defect area,and the defect features are extracted from many aspects such as shape contour,color,location and regional features,and the data feature distribution of various defect images is established.Then,the defect features with different characteristics and quantities are uniformly con-verted into the form of feature detection matrix,and the cosine similarity is used to measure the similarity be-tween the defect feature matrix and the product surface defect feature matrix,so as to judge whether the product has defects,and classify the product surface defects.Taking packaged products as an example,4 820 product sample images are collected for defect detection experiment.The results show that the average accuracy,false detection rate,missed detection rate and Kappa coefficient of the proposed method for the detection of product surface defects are 97.48%,3.30%,0.77%and 0.955 7,respectively,which verifies the effectiveness and con-sistency of the method.

surface qualitymulti-feature fusioncosine similaritydefect detecting

吴庆华、高粲、张哲铭、任耀强、沈高建

展开 >

湖北工业大学机械工程学院,湖北武汉 430068

表面质量 多特征融合 余弦相似度 缺陷检测

湖北中烟工业有限责任公司科研项目

2022JSGY4WH2B041

2024

武汉大学学报(工学版)
武汉大学

武汉大学学报(工学版)

CSTPCD北大核心
影响因子:0.621
ISSN:1671-8844
年,卷(期):2024.57(9)
  • 15