首页|Mechanisms of cholecystokinin-induced calcium mobilization in gastric antral interstitial cells of Cajal

Mechanisms of cholecystokinin-induced calcium mobilization in gastric antral interstitial cells of Cajal

扫码查看
AIM:To investigate the effect of sulfated cholecystokinin-8 (CCK-8S) on calcium mobilization in cultured murine gastric antral interstitial cells of Cajal (ICC) and its possible mechanisms.METHODS:ICC were isolated from the gastric antrum of mice and cultured.Immunofluorescence staining with a monoclonal antibody for c-Kit was used to identify ICC.The responsiveness of ICC to CCK-8S was measured using Fluo-3/AM based digital microfluorimetric measurement of intracellular Ca2+ concentration ([Ca2+]i).A confocal laser scanning microscope was used to monitor [Ca2+]i changes.The selective CCK1 receptor antagonist lorglumide,the intracellular Ca2+-ATPase inhibitor thapsigargin,the type Ⅲ inositol 1,4,5-triphosphate (InsP3) receptor blocker xestospongin C and the L-type voltage-operated Ca2+ channel inhibitor nifedipine were used to examine the mechanisms of [Ca2+]i elevation caused by CCK-8S.Immunoprecipitation and Western blotting were used to determine the regulatory effect of PKC on phosphorylation of type Ⅲ InsP3 receptor (InsP3R3) in ICC.Protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and inhibitor chelerythrine were used to assess the role of PKC in the CCK-8S-evoked [Ca2+]i increment of ICC.RESULTS:ICC were successfully isolated from the gastric antrum of mice and cultured.Cultured ICC were identified by immunofluorescence staining.When given 80 nmol/L or more than 80 nmol/L CCK-8S,the [Ca2+]i in ICC increased and 100 nmol/L CCK-8S significantly increased the mean [Ca2+]i by 59.30% ± 4.85% (P <0.01).Pretreatment of ICC with 5 μmol/L lorglumide inhibited 100 nmol/L CCK-8S-induced [Ca2+]i increment from 59.30% ± 4.85% to 14.97% ± 9.05% (P < 0.01),suggesting a CCK1R-mediated event.Emptying of intracellular calcium stores by thapsigargin (5 μmol/L)prevented CCK-8S (100 nmol/L) from inducing a [Ca2+]i increase.Moreover,pretreatment with xestospongin C (1 μmol/L) could also abolish the CCK-8S-induced effect,indicating that Ca2+ release from InsP3R-operated stores appeared to be a major mechanism responsible for CCK-8S-induced calcium mobilization in ICC.On the other hand,by removing extracellular calcium or blocking the L-type voltage-operated calcium channel with nifedipine,a smaller but significant rise in the [Ca2+]i could be still elicited by CCK-8S.These data suggest that the [Ca2+]i release is not stimulated or activated by the influx of extracellular Ca2+ in ICC,but the influx of extracellular Ca2+ can facilitate the [Ca2+]i increase evoked by CCK-8S.CCK-8S increased the phosphorylation of InsP3R3,which could be prevented by chelerythrine.Pretreatment with lorglumide (5 μmol/L) could significantly reduce the CCK-8S intensified phosphorylation of InsP3R3.In the positive control group,treatment of cells with PMA also resulted in an enhanced phosphorylation of InsP3R3.Pretreatment with various concentrations of PMA (10 nmol/L-10 μmol/L) apparently inhibited the effect of CCK-8S and the effect of 100 nmol/L PMA was most obvious.Likewise,the effect of CCK-8S was augmented by the pretreatment with chelerythrine (10 nmol/L-10 μmol/L) and 100nmol/L chelerythrine exhibited the maximum effect.CONCLUSION:CCK-8S increases [Ca2+]i in ICC via the CCK1 receptor.This effect depends on the release of InsP3R-operated Ca2+ stores,which is negatively regulated by PKC-mediated phosphorylation of InsP3R3.

Cholecystokinin octapeptideInterstitial cells of CajalCalcium mobilizationProtein kinase C

Yao-Yao Gong、Xin-Min Si、Lin Lin、Jia Lu

展开 >

Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China

国家自然科学基金Programs of Department of Health of Jiangsu Province

30900666H201061

2012

世界胃肠病学杂志(英文版)
太原消化病研治中心

世界胃肠病学杂志(英文版)

SCI
影响因子:1.001
ISSN:1007-9327
年,卷(期):2012.18(48)
  • 2
  • 36